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Observation of vibrational modes of irregular drums
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Vibrational modes of irregular or prefractal drums have been calculated using a correspondence
between the wave propagation and the diffusion equations. The resonance frequencies and the
vibrational-mode structures measured on low thickness plastic film membranes using a holographic
setup are found to be in good agreement with theoretical predictionsl998 American Institute

of Physics[S0003-695098)03949-7

Vibrational properties of irregular objects are of generalHere, 7, is the decay time constant of the diffusion eigen-
interest but remain largely unexplained. Fractal geometry hastateV, and w,, is the eigenfrequency of the corresponding
appeared to be an efficient tool to describe irreguldrity. vibration mode. Details about the numerical method used to
When the physical properties of an object are due to theolve Eq.(2) can be found in Refs. 5 and 6.
hierarchical character of its geometry, the main physical In Table I, we give the ten first eigenfrequencies com-
characteristics can be found by studying deterministiqputed from Eq.(2) for the various drums shown in Fig. 1.
fractals? The problem we address here is the vibration ofThe frequencies have been normalized to the first mode of
drums with irregular boundaries. The main properties ofthe square drum. Note that the eigenfrequencies are shifted to
resonators are their spectra, the structure of their vibrationaligher values: everything happens as if the effective mem-
modes and the damping of these modes. Mathematical agrane was smaller, although the area is conserved in the pro-
pects of the excitation of fractal drums are examined in Refsgess.

3 and 4. In Fig. 2, we show the shape of some of the computed

The drums we study are described in Fig. 1. On top, thenodes. The amplitudes are represented by gray levels, black
generator used to “fractalize” the square initiator No. O is standing for regions with large positive amplitudes and white
shown. Drum No. 1 is a regular prefractal of the first gen-standing for regions with large negative amplitudes. The fun-
eration. It has &4 symmetry and the corresponding degen-damental mode of each structure exhibits no nodal lines and
eracies. Drum No. 2 is obtained from drum No. 0 by apply-its amplitude decays rapidly from the center towards the
ing the generator on two neighboring sides only. Drum No. 3edges. Modes 2 and 3 of drum No. 1 are degenerated and
is similar to drum No. 1 but its generator has unequal lengtfbne obtains the third mode by a 90° rotation of the second
segments. The two latter drums are not symmetric and, thergnode. Of particular interest is the sixth mode of drum No. 3.
fore, have no spectral degeneracy, except for possible acak is localized in the upper-left “wing” of the structure and a
dental degeneracies. large part of the drum does not vibrate, or vibrates with a

We computed the eigenfrequencies and the vibrationalyery small amplitude. It is a case of weak localization which
mode structures of the drums using a correspondance be-

tween the wave propagation equation and the diffusion
equatior®
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cient. The general solution of propagation E#) is made No.0
out of imaginary exponentials, whereas the solution of diffu-
sion Eq.(2) is made out of decaying real exponentials. How-
ever, when solved on the same domain, the two problems
lead to the same eigenvalue and eigenfunction problem
through the relation:
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Here, ¢ is the wave velocity andD is the diffusion coeffi-
No.1

No.2 No.3

FIG. 1. Top: Generator of the fractal drums. Drum Nos. 0 and 1 are pre-
fractals at iteration 0 and 1. Drum No. 2 is obtained by applying the gen-
dpresent address: Laboratoire LAB.EL, Universie Haute-Alsace, IUT,  erator only on two neighboring sides of the square initiator. Drum No. 3 is

61 rue Albert Camus, F-68093 Mulhouse Cedex, France. built with an irregular generator with segments of lengths 0.5, 1, and 1.5
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TABLE |. Relative eigenfrequencies of the four drums shown in Fig. 1. TABLE Il. Experimentally identified resonances of drum Nos. 1 and 3. A
Frequencies are normalized to the fundamental eigenfrequency of the squaskash bar indicates a nonobserved resonance. For each drum, eigenfrequen-
drum No. 0. cies are given relative to the fundamental and they are compared to theoret-
ical predictions(in parenthesgs

Mode Drum No. 0 Drum No. 1 Drum No. 2 Drum No. 3

Drum No. 1 Drum No. 3

1 1 1.8253 1.2432 1.6595 Mode v (H2) vlv, v (H2) vlv,

2 1.5811 2.5016 1.7942 2.1586

3 1.5811 2.5016 2.0509 2.4865 1 298.0+1 1(1) 146.0+1 1(1)

4 2 2.5617 2.2742 2.6820 2 / /(1.37) / /(1.30

5 2.2361 2.6326 2.5177 2.8151 3 / /(1.37) 219.9+1 1.511.50

6 2.2361 2.9578 2.6313 2.8542 4 / /(1.4 / 1(1.62

7 2.5495 2.9578 2.8809 3.1184 5 / /(1.495 243.7+1 1.671.69

8 2.5495 3.3205 2.9072 3.2862 6 485.0+1 1.621.63 / 1(1.72

9 2.9155 3.4492 2.9790 3.3247 7 / 1.621.63 275.9+1 1.891.89
10 2.9155 3.4804 3.2220 3.3784 8 541. 71 1.821.82 / /(1.98

9 563.4t1 1.891.90 293.4-1 2.012.00

is often observed in surface fractal resonafdts. . . . . .
The drum contours have been made by laser machinin@re slightly shifted to lower values, but their ratios remain

. . y onstant.

in stainless-steel platdthickness 0.5 mm The membranes The drums are excited by a loudspeaker installed at

are made out of um thick stretched polyethylene films. To y P

it tonsi tarts f . £ il abou 1 m distance, to ensure an almost uniform excitation.
ensure uniform tension, one starts irom a square piece ot i, 5,/5iq possible nonlinear effects, the excitation is kept as

which is much larger than the plates. The film is stretched ing,, a5 possible. To find the resonances experimentally a la-
all directions to increase its size, but keeping its squarger heam hits the nondiffusive face of the membrane and we
shape. The steel plate is then glued on the central part of thgyserve the reflected laser Spot on a screeresdm away.
film, where the tension is expected to be the most uniformat resonance, the vibrational amplitude greatly increases and
We verified the tension uniformity by examining the drumsthe laser spot distinctly oscillates. Alternatively, we use an
between crossed polarizers: birefringence may appear iaccelerometer placed in front of the membrane. The mem-
some parts of the membrane submitted to a nonuniform suibrane pushes and pulls the air, which applies forces on the
face tension. None was observed with our apparatus. In ordeiccelerometer. While scanning the loudspeaker frequency,
to use the drums in a holographic setup, the surfaces of thifne electrical tension delivered by the accelerometer is re-
transparent membranes are made diffusive by spreadingprded using a lock-in amplifier. Both methods gave the
small silica particle$40—60u.m) onto them and softly fixing same results for the eigenfrequencies and the spectral widths
these particles with a thin layer of hair spray. This increase®f the resonances.
the mass of the membrane. Measurements before and after In Table Il, we give some observed resonances for
spreading the particles have shown that the eigenfrequenci€éums No. 1 and 3. Results are given in reduced units, taking
as a natural unit the fundamental of each drum. Numbers in
parenthesis are theoretical values. Table Il shows that we
identified several modes for each drum with a fairly good
precision Av/v<=2%). Some resonances were not ob-
served, probably because of a weak coupling of the drums
with the excitation sound wave: due to the symmetry of
drum No. 1 the eigenstates 2, 3, and 4 are not expected to be
coupled to a uniform excitatiohThe resonance widths are
of the order of 1 Hz, showing that th@ factors are of the
same order for all observed modes. Losses are of two kinds:
those due to energy dissipation in the membrane itself, and
those due to coupling with aia vibrating membrane is a
loudspeaker In our case, the latter is probably dominant.
We use a standard holographic Mach—Zehnder §etup
record the vibrational modes of the drums with a time-
average method. For a sinusoidal movement with maximal
amplitudeA of the object, the intensity distribution over the
surface of the reconstructed object in the hologram, when the
illumination time is much larger than the vibrational period,
is given by

L(X,y) < JZ[2mAF(X,y)(COS @1+ COS @)/ ]. (4

FIG. 2. Top: modes 1 and 2 of drum No. 1. Middle: modes 1 and 4 of drumHere’)\ is the Wave!ength of th.e Iase_r bea_.ﬂa,ls the zeroth-
No. 2. Bottom: modes 1 and 6 of drum No. 3. Note that the mode 2 of drunrder Bessel function of the first kinds; is the angle be-

No. 1 is not coupled to a uniform excitation. tween the direction of illumination and the direction of the
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requires very low levels of excitation. However, our mem-
branes are very sensitive to excitations produced by air flows
and noise because of their small thickness and weight. Tem-
perature effects are also noticeable: a change of 5 °C in the
room temperature shifts the resonance frequencies by several
Hz. For these reasons, the optical table was installed in a
thermally and acoustically isolated room to avoid excitation
of the membrane by stray noise and to guarantee reproduc-
ible experimental conditions. Figure 3 shows experimental
holograms recorded at previously measured resonance fre-
quencies. On the left, we show simulations obtained using
Eq. (4) with the computed eigenstates. The comparison is
very favorable and is an indicator of the good quality of the
membranes.

The results we obtained also validate the use of our
method to compute vibrational eigenfrequencies and eigen-
modes of irregular drums using the diffusion equation in-
stead of the wave propagation equation. Our membranes
were acoustically excited. Therefore, we could not perform
the experiments in vacuum. As a consequence, the energy
losses are mainly due to the coupling with air and it was not
possible to study the intrinsic damping properties of our
membranes. Increased irregularity could increase the internal
losses of a membrane because large differences in vibrational
amplitude occur on small scales, possibly inducing nonlinear
effects® Liquid-crystal membranes which are of excellent
quality can be electrically excited. They can vibrate in
vacuum and appear very promising to study the localization
effects®

FIG. 3. Comparison of some simulations using E).with A=1 um, ¢, ]
=¢,=45°, A\=632.8nm, and experimental holograms. The number of  The holographic measurements were made at the acous-
fringes can be different because amplitudes in the experiments were nejc room of the Centre de Travaux E')q'mentaux of the
precisely adjusted to km. The shape of the measured modes comparese e Polytechnique The authors wish to thank P. Lavialle
very favorably with the theory. . . " ’
for his help in recording the photographs.
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