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Acoustical properties of irregular cavities described by fractal shapes are investigated numerically.
Geometrical irregularity has three effects. First, the low-frequency modal density is enhanced.
Second, many of the modes are found to be localized at the cavity boundary. Third, the acoustical
losses, computed in a boundary layer approximation, are increased proportionally to the perimeter
area of the resonator and a mathematical fractal cavity should be infinitely damped. We show that
localization contributes to increase the losses. The same considerations should apply to acoustical
waveguides with irregular cross section. ©1997 Acoustical Society of America.
@S0001-4966~97!00210-5#
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INTRODUCTION

Geometrical irregularities appear in many natural a
artificial systems and their vibrational properties are of g
eral interest. How trees respond to wind, and how sea wa
depend on the topography or geometrical structure of
coasts and breakwaters are largely unanswered quest
The emergence of fractal geometry has been a signifi
breakthrough in the description of strong geometrical irre
larity and its associated physical properties.1,2 The fractal
language permits discussion of this question in a w
defined and documented geometrical framework. Not o
does fractal geometry permit a description of strong stat
cal irregularity, but it also allows consideration of the det
ministic fractals as simple models for extreme geometr
disorder. When the physical properties of the objects that
consider are due to the hierarchical character of their ge
etry, then their physical properties can be studied on de
ministic fractal objects.2 This is, for example, the case fo
self-similar electrodes where the study of deterministic s
tems is readily applicable to random self-similar structure3

The three main properties of resonators are their sp
trum or modal distribution, the spatial distribution of th
modes~which may exhibit localization or confinement e
fects!, and their damping. Current empirical knowled
about waves and resonators indicates that a perturbation
resonator geometry may strongly modify the quality factor
resonances. It has already been shown in the case of ‘‘m
fractals’’ vibrations~the so-called fractons modes! that geo-
metrical irregularity has a strong effect on damping.4

We address here the same general question for aco
cal cavities: Do the geometrical irregularities play a role
the losses and why? We believe that the study of fra
resonators can help to understand the acoustical properti
irregular cavities in general, with possible application
room acoustics, acoustical waveguides, and anechoic ch
bers. The problem of the asymptotic~high-frequency! den-
sity of states in fractal resonators has already been stu
from a mathematical point of view.5–9

Experimental observation and numerical investigation
the low-frequency vibrations of fractal drums are reported
2014 J. Acoust. Soc. Am. 102 (4), October 1997 0001-4966/97/10
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Refs. 10 and 11. The drum geometries were generated
iterative transformation of a square initiator, as shown in F
1. The figure shows the contour of prefractals at genera
n50, n51, and n52. Systems in which the perimeter
only fractal, like a fractal drum or a fractal cavity, are calle
‘‘surface fractals’’ and their vibrations are called ‘‘fract
nos.’’ In the case of the fractal drum, the vibrations obey
Dirichlet boundary condition and are named Dirichl
fractinos.10,11

Eigenmodes of 2-D prefractal resonators using Neum
boundary conditions, i.e., Neumann fractinos, have also b
studied recently.12,13 This renders possible the study o
acoustic modal density and damping in the 3-D prefrac
cavities shown in Fig. 1. This is the purpose of the pres
work.

We show on two specific examples that the lo
frequency modal distribution is strongly modified and th
the damping is increased by a factor which depends of
degree of irregularity of the boundary. We also show that
localization effects found by Russet al. contribute even
more to increase the damping. The losses are computed
the spatial distribution of the modes as we recall below.

I. QUALITY FACTOR AND AMPLITUDE DISTRIBUTION

The quality factorQN of a resonator for a modeN is the
ratio of the stored energy to the losses per cycleWN

QN52pEN /WN . ~1!

The quality factor characterizes the ability of the res
nator to accumulate reactive energy for a given power inp
It also determines the life timeQNvN

21 of the oscillation
when no power source is present.

In this work we restrict to linear acoustics and consid
the limit of ‘‘very’’ weak losses so that the amplitude distr
bution is well-approximated by the zero-loss cav
modes.14–16 We consider an eigenmodeN at frequencyvN

with a pressure distribution:

pN~x,y,z,t !5p0V1/2CN~x,y,z!cos~vNt !. ~2!
20142(4)/2014/6/$10.00 © 1997 Acoustical Society of America
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Herep0 is the peak acoustic pressure andV is the volume of
the cavity. Callingc the sound velocity, the pressure obe
the Helmholtz equationDP5(1/c2)]2P/]t2 with the Neu-
mann boundary conditions]P/]n50. This condition corre-
sponds to a perfectly reflecting surface with no phase cha
EigenmodesCN(x,y,z) satisfy the eigenvalue equatio
DCN52(vN

2 /c2)CN . We normalizeCN(x,y,z) in the vol-
umeV by

E E E
V
dvCN

2 ~x,y,z!51. ~3!

The maximum elastic energy or kinetic energy is

EN5p0
2VE E E

V
dv~c2r!21CN

2 ~x,y,z!5Vp0
2/c2r, ~4!

wherer is the density of the gas.
Acoustical losses in a rigid cavity are due to heat co

duction and viscous dissipation. In the bulk, these losses
small at audio frequencies and are neglected here.14–16 En-
ergy dissipation takes place at the cavity walls on a sm
boundary layer with a thickness of order 1024 cm.15,17 To
calculate the losses, it is convenient to replace the rigid w
by walls with a small admittance and to consider that th
are no losses in the fluid. We are restricted here to prefrac
in which the smaller flat element~smaller geometrical cutoff!
is larger than this thickness.18 Our goal is to identify the

FIG. 1. System geometry. Top: Generator of the fractal geometry. Mid
Cross sections of the prefractal cavities under study. The area is cons
through the iteration process. Bottom: prefractal cavities of generatio
~cubic cavity! and 1.
2015 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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influence of the geometrical irregularity; we consider th
our walls present a small but finite specific admittancee(v).
This admittance could be that of the real fluid bounda
layer, or more simply, the admittance of a suitable sou
absorbing material of small thickness covering the late
cavity walls.

The energy dissipation is the total outflow of ener
from the boundary. In the case of weak losses, the powerLN

dissipated at the cavity boundaries can be expressed
function of the zero-loss amplitude distribution by

LN5V~p0
2/rc!E E

S
dsuCN

2 ~x,y,z!uRe e~vN!. ~5!

The quality factor of the modeN is given by

1/QN5@Re e~vN!#~c/vN!E E
S

dsuCN
2 ~x,y,z!u. ~6!

It can then be writtenQN52p(LN /lN)/@Re e(vN)#, where
lN is the wavelength and

1/LN5E E
S

dsuCN
2 ~x,y,z!u. ~7!

Then, the higher the amplitude on the boundary, the low
the value of the lengthLN and the lower the quality factor
Because our purpose is to study the dependence of the d
ing on the geometry, we have to know the amplitude dis
bution to compute this integral. This paper is organized
follows: We first recall briefly the numerical method.4,12 We
then discuss the low-frequency modal density, the locali
tion effects, and finally the effect of geometry on dampin

II. SOLUTION OF HELMHOLTZ EQUATION

As we work on cylindrical cavities with constant irregu
lar cross sections, the variablez can be separated and th
eigenfunctions takes the form

CN~x,y,z!5~2/Lz!
1/2 cos~mpz/Lz!Cn~x,y!, ~8!

with m50,1,2,... @for m50, CN(x,y,z)5Lz
21/2Cn(x,y)].

The functionCn(x,y) satisfies the two-dimensional eigen
value equationDCn52(vn

2/c2)Cn and is normalized over
the cross section. The eigenfrequenciesvN are given by

vN
2 5vn

21~mpc/Lz!
2. ~9!

Our numerical method to computeCn(x,y) andvn
2 is to

consider, instead of the Helmholtz equation, the tim
dependent Fourier or diffusion equation:

DDC5]C/]t. ~10!

In the Helmholtz equation, the variable is the acousti
pressure, i.e., a positive or negative departure for the nor
fluid pressure. In Eq.~10!, C represents a concentration o
diffusing particles, or a departure to a constant concentrat
which in our case can also be either positive or negat
Equivalently, Eq.~10! is the Fourier heat equation and th

:
ed
0

2015Sapoval et al.: Acoustics of fractal cavities
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variableC could represent positive or negative variations
the temperature around a constant value.

The general time-dependent solution of this equation
combination of real exponentials of the form C
5(ncnCn(x,y)exp(2t/tn), wheretn satisfies an equivalen
eigenvalue equationDCn52(Dtn)21Cn with the same
boundary condition. In the diffusional approach, the Ne
mann boundary condition]C/]n50 means that diffusing
particles are reflected at the boundary so there exists no
flux across the surface. Here it corresponds to the fact
the gas velocity is null on the walls.

The method is then to numerically compute the tim
dependent solution of Eq.~10!: Starting with an arbitrary
initial function z0(x,y,t50) the system will converge natu
rally to a function proportional to exp(2t/t0)C0(x,y) yielding
the first eigenstateC0(x,y), the first eigenvalue 1/t0 , and
v0 through the correspondencev0

2/c251/Dt0 . To compute
the next state, one starts with a new trial function which
orthogonal toC0(x,y). This new distribution converge
with a time constantt1 to the next eigenfunction with non
zero initial weight, namelyC1(x,y). The procedure is then
iterated and the states are obtained sequentially, by orth
nalization of the (n11)th initial distribution to then previ-
ously computed eigenfunctions, thus converging to then
11)th mode. The numerical implementation uses a fin
difference method on a discretized system. It is discusse
detail in Refs. 4 and 12. One can find in these paper
discussion of the effects of the finite mesh size, of the c
vergence problems, and of roundoff errors on final precis

III. MODAL DENSITY AND LEVEL SPACING

Two quantities play a dominant role in resonators st
ies: the density of states or modal density and the le
spacing.14–16 Here we deal with the cavities obtained b
‘‘fractalization’’ of the cross section of a cube with sideL.

The computation of the low-frequency modes for t
2-D systems shown in Fig. 1 is presented in Ref. 12.
obtain the eigenvaluesvN

2 of the 3-D cavity, we have to
combine the 2-D valuesvn

2 with the vertical modes using Eq
~9!. We callvn,max

2 the largest eigenvalue that we have co
puted for a 2-D system. Some combinations ofvn

2 with
(mpc/Lz)

2 can give vN
2 >vn,max

2 . The 3-D modal density
can therefore be exactly computed only forvN

2 <vn,max
2 .

With 234, 240, and 214 computed states for systems 0
and 2, we obtain, respectively, the first 2652, 2704, and 2
modes of the corresponding cavities.

The vibrating modes of a cube of sideL are labeled by
the numberm, m8, andm9 of half-wavelengths in thex, y, z
directions @with m, m8, m950,1,2,..., and eigenvalues
vm,m8,m9

2
5(p2c2/L2)(m21m821m92)]. We use in the fol-

lowing a reduced frequencyVN5Vn,m5vn,m/v1,0,0, where
v1,0,05pc/L is the fundamental frequency of the cubic ca
ity. For the cube we then haveVm,m8,m9

2
5(m21m82

1m92).
The numerical results for the integrated modal dens

for the three cavities~with the same volumeL3) are shown
in Fig. 2. They are to be compared with the high-frequen
2016 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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Weyl approximation N(v)5(1/6p2)V(v/c)31(1/16p)
3S(v/c)2, which writes, with our reduced frequency unit
as

N~V!5~p/6!V31~p/16!~S/L2!V2, ~11!

whereS is the total area of the cavity.19 For cavities 0, 1, and
2 the value ofS is, respectively, equal to 6L2, 10L2, and
18L2.

In Fig. 2 the dotted line represents the Weyl leadi
term (p/6)V3 and the dashed lines represent Eq.~11! for the
three cavities. The low-frequency modal density is nota
increased by the irregularity. The high-frequency Weyl a
proximation still gives a good estimation of the modal de
sity. Besides the net increase of the modal density due
increased fractalization one observes oscillations.9,12,13These
oscillations are due to the existence of a number of dege
ate or quasi-degenerate states in our particular determin
2-D systems as explained in Ref. 12. These oscillati
should not exist in irregular cavities where the feature si
along the frontier are different or random.

The level spacing is modified in two ways. First, th
increase in the modal density reduces the level spacing.
ond, as discussed in Ref. 12, the pseudo-chaotic behavio
the 2-D systems induces a partial level repulsion.~This effect
could be partially smeared out in 3-D.! These two facts
should be reinforced by an increased irregularity.

IV. LOSSES IN PREFRACTAL CAVITIES

In order to selectively study the influence of the geo
etry on the losses, we consider in the following that t
lower and upper surfaces of the cavities have infinite imp
ance. The losses are then restricted to the lateral surfac

Two different situations occur, depending on the natu
of the modes, whether trivial modes or higher-order mod
For the trivial modes which correspond to the staten50 of
the 2-D problem for whichCn50(x,y)51/L, integral ~7!
increases proportionally to the perimeter. These modes
then damped proportionally to the length of the perimeter
an horizontal cross section. Then a prefractal of generation
presents losses which are 2n times larger than the cubic cav
ity, at least for the lower fractal generations. In our simp

FIG. 2. Integrated modal density for cavities 0, 1, and 2. The dotted
represents the Weyl leading term. Dashed lines represent the Weyl app
mation of Eq.~11!.
2016Sapoval et al.: Acoustics of fractal cavities
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fied framework a mathematical fractal would present infin
losses for all these modes as far as our model for the da
ing still holds. Although somewhat trivial, this statement
important and confirms the influence of fractal geometry
damping. Really, for high enough generation, the sma
cutoff would become smaller than the boundary layer and
problem has to be reconsidered.

More interesting are the higher-order modes (nÞ0)
which are of two types: those withm50 and those withm
Þ0. If m50 the integral in Eq.~7! factorizes asds5Ldl,
wheredl is the differential element along the perimeter o
horizontal cross section of the cavity. For these modes
integral for the losses takes the form

1/LN5E
perimeter

dluCn
2~x,y!u. ~12!

If mÞ0, the integral in Eq.~7! factorizes asds
5(L/2)dl and the losses are simply smaller by a factor o
than those obtained from Eq.~12!. The integral in Eq.~12! is
the quantity that we actually compute from the knowledge
the amplitude distribution of the 2-D Neumann fractinos.

The results are shown in Fig. 3. For prefractal cavit
the results indicate that the power dissipation@for constant
e(v)] is increased by the irregularity of the frontier in
manner which is roughly proportional to the length of t
perimeter,as for the trivial modes.For a few states, the
prefractal systems exhibit still higher losses; for example,
states 61–68 of cavity No. 2. The higher losses for th
particular states are due, as shown below, to the localiza
of these states in small regions near the cavity walls.

V. RELATION BETWEEN LOCALIZATION AND
LOSSES

In this section we discuss why the confinement o
vibration in a restricted part of the cavity near the bound
increases the damping. The localization characterizes th
regular distribution of the vibration amplitude and was stu
ied in Ref. 12. It was found that a number of modes w
confined at the boundary, the amplitude the inner part of

FIG. 3. Power dissipation, as measured byL/LN , for the modes withm
50 of the three cavities in a boundary layer approximation. The dissipa
is roughly proportional to the length of the perimeter. Some modes exh
very high losses. For a cubic cavity, the losses take two different value
m50, m8Þ0 ~or mÞ0, m850), L/LN56. If mÞ0, m8Þ0, L/LN58.
2017 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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resonators being small. To characterize mathematically
localization or the confinement of each modeCn , we com-
pute the ‘‘existence surface’’Sn defined by Thouless as20

Sn5F E dx dyuCnu4G21

. ~13!

If we find thatSn is significantly smaller than the surfac
L2 of the cross section, we say that this particular mode
‘‘localized.’’ Note that for the delocalized cosine function
of the square system, the value of the relative occupa
surface isSn /L254/9'0.44 for all modes.

The values of the relative existence surfaceSn /L2 for
our geometries are shown in Fig. 4. Apart from the very fi
states, the existence surface is only a fraction of the t
surface of the resonator. Most important, the tendency
localization is increased by the irregularity of the frontie
For generation 1 the average^Sn /L2& over the first 200
lower states was found to be equal to 0.35. For generatio
the averagêSn /L2& over the 200 states that we have com
puted is equal to 0.24. The highest degree of localization
this system is equal to 0.031 for the degenerated moden
561,62. One should note that our systems have a rota
degeneracy which has the effect of increasing the existe
volume. Without any symmetry the localization surfa
would be approximately four times smaller.

In Fig. 5 we show the amplitude distribution of a del
calized (n54) and of a localized mode (n516). The spatial
location of confined modes is linked to the Neumann bou
ary condition for which the boundary region is free to v
brate. Eigenmodes can then have a maximum amplitud
the boundary. The confinement is a weak localization eff
which does not occur for all states. When the fractal char
ter of the frontier increases, i.e., from one prefractal gene
tion to the next, we find more and more of these localiz
states. This is an important property of the Neuma
modes.12 Qualitatively, the more irregular and winding th
boundary, the more localized the Neumann fractinos.
expect a similar behavior for systems which are irregular
the three spatial directions.

n
it
If

FIG. 4. Relative existence surfaceSn /L2 for the modes (nÞ0, m50). The
localization surface decreases with the fractal generation. Some mode
strongly localized, e.g., modes 61–68 of cavity No. 2. The horizontal line
Sn /L254/9 corresponds to the modes of the square.
2017Sapoval et al.: Acoustics of fractal cavities
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The effect of localization is to enhance locally the a
plitude of the vibration at the cavity walls in the regio
where the energy is dissipated. There exists a correla
increase of the integral in Eq.~12!. If, in a very crude ap-
proximation, one considers the mode as constant ove
existence surface and zero outside, its amplitude is of o
Sn

21/2. Integral~12! gives a value

LN
21>Sn

21Lp , ~14!

whereLp is theperimeterof the zone where the states rea
exist.

Consider for instance moden516, shown in Fig. 5~b!.
Its existence volume is approximately given by the surface
the black and white regions:Sn>438(L/16)25L2/8. The
perimeter of the zone where the amplitude is large, as in
cated by the dashed contour in the figure, is of orderL0>4
315(L/16) and from Eq.~14! L/LN>30. For this mode the

FIG. 5. Two particular modes of the prefractal cavity No. 2.~a! Mode n
54, m50; ~b! moden516, m50. The amplitudes are indicated by diffe
ent gray levels. Black and white regions stand for extremum positive
negative pressures. The gray tones stand for low pressures. Mode~a! is an
example of delocalized state, while mode~b! is an example of localized
state. Localization occurs at the cavity boundary. The dashed line indic
the perimeterLp of the zone where the mode is confined. It is also the reg
where the energy is dissipated.
2018 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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numerical value isL/LN535, in good agreement with ou
crude approximation. This approximation also applies to
strongly localized states 61–68 of system No. 2. Th
states, which are discussed in Ref. 12, have the hig
losses.

The power dissipation as a function of the relative ex
tence surface is shown in Fig. 6. In spite of a strong disp
sion, the global trend is indeed an increase of the losses
irregularity and localization.

Equation~14! is of extreme importance because it sho
that for a given localized mode, if one locally increases
perimeter, the losses are increased correspondingly. It m
that a mathematical fractal would also exhibit infinite dam
ing for these higher-order modes~with the same restrictions
than above!.

The quality factor for a modeN can be written in our
reduced units:

QN5p~VNLN /L !/@Re e~vN!#. ~15!

We have plotted in Fig. 7 the numerical values of the fac

d

es
n

FIG. 6. Dissipation versus localization. The losses increase from one
fractal generation to the next, while the localization volume decrea
States 61–68 of cavity No. 2 which are strongly localized have the lar
losses.

FIG. 7. Quality factor, measured byVNLN /L, of the low-frequency modes
with m50 as a function of the reduced frequencyV. For the cube the values
of VNLN /L are equal toVN/6 for the modesm50, m8Þ0 ~or mÞ0, m8
50) and are equal toVN/8 if mÞ0, m8Þ0. This is indicated by the two
lines. The higher the geometrical irregularity, the lower the quality facto
2018Sapoval et al.: Acoustics of fractal cavities
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VNLN /L as a function of the reduced frequencyVN for our
three cavities. One observes that for all frequencies the
regular cavities present lower quality factors than the cu
Despite the dispersion, increasing the irregularity induce
diminution of the quality factor.

VI. CONCLUSION

We have studied numerically the modal density, the
calization, and the losses of acoustical modes in cavities w
prefractal shapes. The modal density is enhanced by th
regularity of the boundary. Consequently, the level spac
decreases and becomes more regular. Acoustical losses
been studied in a boundary layer model and have been fo
to increase with irregularity. As far as our simplified mod
still applies, a mathematical fractal cavity would present
infinite damping. We have established a simple corresp
dence between localization and losses. These results con
in a well-established physical frame the suggestion that f
tal resonators present specific damping properties. Note
self-affine geometries1 could even be more efficient tha
self-similar geometries in increasing the resonator perime
therefore the damping.

The same physical effects should appear in the propa
tion of sound waves in acoustical waveguides. Neglect
the anisotropy effects, the attenuation length for the acou
energy of a propagating wave is of orderLN /Re(e). There-
fore, the data in Fig. 3 can be used to estimate the attenua
in fractal waveguides. Because of the localization, it sho
be possible to propagate higher-order localized modes in
ferent regions of such an irregular waveguide with a sm
interference between these modes. Some of these ef
could also exist in electromagnetic waveguides.

Further studies are needed to understand the influenc
fractal geometry on ray acoustics which corresponds to
high-frequency limit of our problem.

Several of these results may be of interest for ro
acoustics. An increased low-frequency modal density co
be favorable. On the other hand, localization may have ne
tive consequences. Although our results on damping w
obtained in the weak losses case, they can be conside
rationale to better understand the dependence of properti
anechoic chambers on geometry.

ACKNOWLEDGMENTS

One of us~SR! has benefited from the E. E. C. progra
‘‘Human Capital and Mobility.’’ The computation was pe
2019 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
ir-
e.
a

-
th
ir-
g
ave
nd
l
n
n-
rm
c-
at

r,

a-
g
tic

on
d
if-
ll
cts

of
e

ld
a-
re
d a
of

formed at the ‘‘Institut du de´veloppement et des ressourc
en informatique scientifique’’~IDRIS! in Orsay, France.

1B. B. Mandelbrot,The Fractal Geometry of Nature~Freeman, San Fran
cisco, 1982!.

2B. Sapoval,Fractals ~Aditech, Paris, 1990!; Universalités et Fractales
~Flammarion, Paris, 1997!.

3B. Sapoval, ‘‘General formulation of Laplacian transfer across irregu
surfaces,’’ Phys. Rev. Lett.73, 3314–3316~1994!.

4S. Russ and B. Sapoval, ‘‘Anomalous viscous damping of vibrations
fractal percolation clusters,’’ Phys. Rev. Lett.73, 1570–1573~1994!. For
a review on fractons, see T. Nayama, K. Yakubo, and R. Orbach, ‘‘D
namical properties of fractal networks: scaling, numerical simulations,
physical realizations,’’ Rev. Mod. Phys.66, 381–443~1994!.

5M. V. Berry, ‘‘Distribution of modes in fractal resonators,’’ inStructural
Stability in Physics,edited by W. Guttinger and H. Elkeimer~Springer-
Verlag, Berlin, 1979!, pp. 51–53.

6M. L. Lapidus, ‘‘Fractal drum, inverse spectral problems for elliptic o
erators and a partial resolution of the Weyl-Berry conjecture,’’ Trans. A
Math. Soc.325, 465–529~1991!, and references therein.

7J. Brossard and R. Carmona, ‘‘Can one hear the dimension of a frac
Commun. Math. Phys.104, 103–122~1986!.

8M. L. Lapidus and C. Pomerance, ‘‘The Riemann zeta-function and
one dimensional Weyl-Berry conjecture for fractal drums,’’ Proc. Lond
Math. Soc.3, 41–69~1993!.

9J. Fleckinger, M. Levitin, and D. Vassiliev, ‘‘Heat equation on the triad
von Koch snowflake: Asymptotic and numerical analysis,’’ Proc. Lond
Math. Soc.71, 372–396~1995!.

10B. Sapoval and Th. Gobron, ‘‘Vibrations of strongly irregular or fract
resonators,’’ Phys. Rev. E47, 3013–3024~1993!.

11B. Sapoval, Th. Gobron, and A. Margolina, ‘‘Vibrations of fracta
drums,’’ Phys. Rev. Lett.67, 2974–2977~1991!.

12S. Russ, B. Sapoval, and O. Haeberle´, Phys. Rev. E55, 1413~1997!.
13Y. Hobiki, K. Yakubo, and T. Nakayama, ‘‘Spectral characteristics

resonators with fractal boundaries,’’ Phys. Rev. E54, 1997–2004~1996!.
14P. M. Morse and K. Uno Ingard,Theoretical Acoustics~Princeton U. P.,

Princeton, 1968!.
15A. D. Pierce,Acoustics: An Introduction to Its Physical Principles an

Applications~McGraw Hill, New York, 1981!.
16M. Bruneau, Introduction aux the´ories de l’acoustique~Université du
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