Acoustical properties of irregular and fractal cavities
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Acoustical properties of irregular cavities described by fractal shapes are investigated numerically.
Geometrical irregularity has three effects. First, the low-frequency modal density is enhanced.
Second, many of the modes are found to be localized at the cavity boundary. Third, the acoustical
losses, computed in a boundary layer approximation, are increased proportionally to the perimeter
area of the resonator and a mathematical fractal cavity should be infinitely damped. We show that
localization contributes to increase the losses. The same considerations should apply to acoustical
waveguides with irregular cross section. 197 Acoustical Society of America.
[S0001-496627)00210-5

PACS numbers: 43.20.KANN]

INTRODUCTION Refs. 10 and 11. The drum geometries were generated by
iterative transformation of a square initiator, as shown in Fig.
Geometrical irregularities appear in many natural andl. The figure shows the contour of prefractals at generation
artificial systems and their vibrational properties are of genv=0, v=1, and v=2. Systems in which the perimeter is
eral interest. How trees respond to wind, and how sea wavesnly fractal, like a fractal drum or a fractal cavity, are called
depend on the topography or geometrical structure of the&surface fractals” and their vibrations are called “fracti-
coasts and breakwaters are largely unanswered question®s.” In the case of the fractal drum, the vibrations obey the
The emergence of fractal geometry has been a significamirichlet boundary condition and are named Dirichlet
breakthrough in the description of strong geometrical irregufractinost®!
larity and its associated physical propertiésThe fractal Eigenmodes of 2-D prefractal resonators using Neuman
language permits discussion of this question in a wellboundary conditions, i.e., Neumann fractinos, have also been
defined and documented geometrical framework. Not onlystudied recently?'® This renders possible the study of
does fractal geometry permit a description of strong statistiacoustic modal density and damping in the 3-D prefractal
cal irregularity, but it also allows consideration of the deter-cavities shown in Fig. 1. This is the purpose of the present
ministic fractals as simple models for extreme geometricaivork.
disorder. When the physical properties of the objects that we  We show on two specific examples that the low-
consider are due to the hierarchical character of their geonfrequency modal distribution is strongly modified and that
etry, then their physical properties can be studied on detethe damping is increased by a factor which depends of the
ministic fractal object$. This is, for example, the case for degree of irregularity of the boundary. We also show that the
self-similar electrodes where the study of deterministic systocalization effects found by Russt al. contribute even
tems is readily applicable to random self-similar structdres. more to increase the damping. The losses are computed from
The three main properties of resonators are their speahe spatial distribution of the modes as we recall below.
trum or modal distribution, the spatial distribution of the
modes(which may exhibit localization or confinement ef-
fecty, and their damping. Current empirical knowledge
about waves and resonators indicates that a perturbation of
resonator geometry may strongly modify the quality factor of  The quality factoiQy of a resonator for a mods is the
resonances. It has already been shown in the case of “masstio of the stored energy to the losses per citle
fractals” vibrations(the so-called fractons modethat geo-
metrical irregularity has a strong effect on dampfng. Qn=27EN/Wy. (1)
We address here the same general question for acousti-
cal cavities: Do the geometrical irregularities play a role in
the losses and why? We believe that the study of fract
resonators can help to understand the acoustical properties en no power source is present.

imegular ca\{ities in ge_neral, with _possible applicat_ion o In this work we restrict to linear acoustics and consider
room acoustics, acoustical waveguides, and anechoic cham, |imit of “very” weak losses so that the amplitude distri-

bers. The problem of the asymptolitigh-frequency den- bution is well-approximated by the zero-loss cavity
sity of states in fractal resonators has already been studierﬁlodesm_m We consider an eigenmodt at frequencywy,

. . . B0
from a mqthemaﬂcal pomt.of viet. - o with a pressure distribution:

Experimental observation and numerical investigation of
the low-frequency vibrations of fractal drums are reported in ~ pn(X,Y,Z,t) = poVY2¥ \(X,Y,2)COL wpt). 2

I.aQUALITY FACTOR AND AMPLITUDE DISTRIBUTION

The quality factor characterizes the ability of the reso-
nator to accumulate reactive energy for a given power input.
t.also determines the life timQywy' of the oscillation
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influence of the geometrical irregularity; we consider that
- ___r_ our walls present a small but finite specific admittaate).

I This admittance could be that of the real fluid boundary
layer, or more simply, the admittance of a suitable sound
absorbing material of small thickness covering the lateral

L L cavity walls.
- The energy dissipation is the total outflow of energy
from the boundary. In the case of weak losses, the phwer
dissipated at the cavity boundaries can be expressed as a
function of the zero-loss amplitude distribution by

Le=Vogee) [ [ aswiicyalRecton.  ©

v=0 v=1 v=2 The quality factor of the modhl is given by

1/QN=[ReE(wN)](C/wN)f Ldsl\lfﬁ,(x,y,z)l. (6)

It can then be writteil®Qy=27(An/\y)/[Re €(wy) ], Where
\n is the wavelength and

1/AN=f L ds| w3 (x,y,z)|. 7)

Then, the higher the amplitude on the boundary, the lower
the value of the lengtth \ and the lower the quality factor.
N Because our purpose is to study the dependence of the damp-
NO- 0 0. 1 ing on the geometry, we have to know the amplitude distri-
FIG. 1. System geometry. Top: Generator of the fractal geometry. Middle:bmIon _to compute this |r_1tegral. This p"?‘per IS O'gi;nlzed as
Cross sections of the prefractal cavities under study. The area is conservégllows_' We first recall b”eﬂy the numerical meth -We )
through the iteration process. Bottom: prefractal cavities of generation dhen discuss the low-frequency modal density, the localiza-

(cubic cavity and 1. tion effects, and finally the effect of geometry on damping.

Herepg is the peak acoustic pressure ands the volume of
the cavity. Callingc the sound velocity, the pressure obeys
the Helmholtz equatiol\ P=(1/c?) P/ #t? with the Neu-
mann boundary conditiondP/dn=0. This condition corre- As we work on cylindrical cavities with constant irregu-
sponds to a perfectly reflecting surface with no phase changgyr cross sections, the variabfecan be separated and the

EigenmodesW (x,y,z) satisfy the eigenvalue equation eigenfunctions takes the form
AP\ = —(wﬁ/cz)\PN. We normalize¥ (x,y,z) in the vol-

II. SOLUTION OF HELMHOLTZ EQUATION

umeV by W\(X,Y,2)=(2IL,) " cogmmz/L,) Wn(X,y), (8)
A2 1 3 with m=0,1,2,... [for m=0, ¥y(x,y,2)=L, ¥2¥ (x,y)].
v v¥N(XY.Z)=1. The functionW,(x,y) satisfies the two-dimensional eigen-

value equatiom\V¥, = — (w2/c?) V¥, and is normalized over
the cross section. The eigenfrequenciggare given by

En=paV f f fvdv<c2p>*1qf§<x,y,z>=Vp3/c2p, (4) wi=wi+(mac/L,)?. 9

wherep is the density of the gas Our numerical method to comput,(x,y) andw? is to
Acoustical losses in a rigid cavity are due to heat con—ConS'dgr’ |r|1:ste§d of dt_?fe Helmholtz gquauon, the time-
duction and viscous dissipation. In the bulk, these losses afiéPendent Fourier or diffusion equation:

The maximum elastic energy or kinetic energy is

small at audio frequencies and are neglected Heré En- DAV = gW/ t. (10)
ergy dissipation takes place at the cavity walls on a small
boundary layer with a thickness of order Tocm®>’ To In the Helmholtz equation, the variable is the acoustical

calculate the losses, it is convenient to replace the rigid wallpressure, i.e., a positive or negative departure for the normal
by walls with a small admittance and to consider that therdluid pressure. In Eq(10), ¥ represents a concentration of
are no losses in the fluid. We are restricted here to prefractaliffusing particles, or a departure to a constant concentration,
in which the smaller flat elemefgmaller geometrical cutoff ~which in our case can also be either positive or negative.
is larger than this thicknes8.Our goal is to identify the Equivalently, Eq.(10) is the Fourier heat equation and the
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variable' could represent positive or negative variations of _ 3000

the temperature around a constant value. G | No. 1 | P - r/
The general time-dependent solution of this equation is a Z 2500 |- \( 2.7
combination of real exponentials of the formW¥ No. 2 ~ e
=3¢,V (X, y)exp(-t/7), wherer, satisfies an equivalent 2000 \ g 7
eigenvalue equatioldMV,=—(Dr,) ¥, with the same 1500 z - Z ' i
. . . ~ . .
boundary condition. In the diffusional approach, the Neu- z 2
mann boundary conditio@¥/dn=0 means that diffusing 1000 s’ . No. 0
particles are reflected at the boundary so there exists no ne L
flux across the surface. Here it corresponds to the fact that 500 |- n
the gas velocity is null on the walls. .
The method is then to numerically compute the time- s
dependent solution of Eq10): Starting with an arbitrary 0 1000 2000 3000 o3 4000

initial function zy(x,y,t=0) the system will converge natu-

rally to a function proportional to exp(t/ 7o) Wo(x,y) yielding ~ FIG. 2. Integrated modal density for cavities 0, 1, and 2. The dotted line

the first eigenstatdfo(x y) the first eigenvalue 1'6 and represents the Weyl leading term. Dashed lines represent the Weyl approxi-
1 ! mation of Eq.(11).

wq through the correspondenm%/cz— 1/D1y. To compute a11

the next state, one starts with a new trial function which is o B ) 3
orthogonal toWy(x,y). This new distribution converges eyl approximation N(w)=(1/6m)V(w/c)"+ (1/16m)

with a time constantr; to the next eigenfunction with non- X S(wl/c)?, which writes, with our reduced frequency units,
zero initial weight, namely¥(x,y). The procedure is then 23S

iterated and the states are obtained sequentially, by orthogo- N(Q)=(#/6)Q3+ (7/16)(S/L?)Q?, (11)
nalization of the 6+ 1)th initial distribution to then previ-
ously computed eigenfunctions, thus converging to the (
+1)th mode. The numerical implementation uses a finit
difference method on a discretized system. It is discussed |I1i
detail in Refs. 4 and 12. One can find in these papers a
discussion of the effects of the finite mesh size, of the con:
vergence problems, and of roundoff errors on final precision,

whereS s the total area of the cavity.For cavities 0, 1, and
&2 the value ofS is, respectively, equal tol&, 102, and

In Fig. 2 the dotted line represents the Weyl leading
term (7/6)Q° and the dashed lines represent Ed) for the
three cavities. The low-frequency modal density is notably
increased by the irregularity. The high-frequency Weyl ap-
proximation still gives a good estimation of the modal den-
sity. Besides the net increase of the modal density due to
lll. MODAL DENSITY AND LEVEL SPACING increased fractalization one observes oscillatiblfs>These
oscillations are due to the existence of a number of degener-
te or quasi-degenerate states in our particular deterministic
-D systems as explained in Ref. 12. These oscillations
should not exist in irregular cavities where the feature sizes
along the frontier are different or random.

The level spacing is modified in two ways. First, the
%ncrease in the modal density reduces the level spacing. Sec-
ond, as discussed in Ref. 12, the pseudo-chaotic behavior of
the 2-D systems induces a partial level repulsidtis effect
could be partially smeared out in 3)DThese two facts
should be reinforced by an increased irregularity.

Two quantities play a dominant role in resonators stud-
ies: the density of states or modal density and the leve
spacing:*~1® Here we deal with the cavities obtained by
“fractalization” of the cross section of a cube with sitle

The computation of the low-frequency modes for the
2-D systems shown in F|g 1 is presented in Ref. 12. Ta
obtain the elgenvalue@N of the 3-D cavity, we have to
combine the 2-D valueaa with the vertical modes using Eq.
(9). We caIIa)n max the Iargest eigenvalue that we have com-
puted for a 2-D system. Some comblnatlonsanﬁ with
(mmc/L,)? can give wN/wﬁ max The 3-D modal density
can therefore be exactly computed only fmﬁ,<wn mae
With 234, 240, and 214 computed states for systems 0, 1V- LOSSES IN PREFRACTAL CAVITIES
and 2, we obtain, respectively, the first 2652, 2704, and 2329 | order to selectively study the influence of the geom-

modes of the corresponding cavities. etry on the losses, we consider in the following that the
The vibrating modes of a cube of sitleare labeled by  |ower and upper surfaces of the cavities have infinite imped-

the numbe, u', andu” of half-wavelengths inthe, y, z  ance. The losses are then restricted to the lateral surfaces.

dl£ECt|0nS [with u, u', u"=0,12,.., and eigenvalues Two different situations occur, depending on the nature

wﬂ,ﬁ/,,ﬂz(WZCZ/LZ)(AL2+M'2+/-L"2)]- We use in the fol-  of the modes, whether trivial modes or higher-order modes.

lowing a reduced frequen®@n=Qp, n=w, /01,00 Where  For the trivial modes which correspond to the state0 of

w; 0,0=wC/L is the fundamental frequency of the cubic cav-the 2-D problem for which¥ ,_(x,y)=1/L, integral (7)

ity. For the cube we then havé) = =(u’+pu'? increases proportionally to the perimeter. These modes are
+u"?). then damped proportionally to the length of the perimeter of
The numerical results for the integrated modal densityan horizontal cross section. Then a prefractal of generation

for the three cavitiegwith the same volumé&?) are shown presents losses which aré @mes larger than the cubic cav-

in Fig. 2. They are to be compared with the high-frequencyity, at least for the lower fractal generations. In our simpli-
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FIG. 3. Power dissipation, as measuredlby, for the modes withm FIG. 4. Relative existence surfag/L? for the modes {0, m=0). The

.=0 of the three C".’W't'es in a boundary layer approxmatlon, The dISSIpat!O_r]ocalization surface decreases with the fractal generation. Some modes are
is roughly proportional to the length of the perimeter. Some modes exhlblit"

very high losses. For a cubic cavity, the losses take two different values. | rongly localized, e.g., modes 61-68 of cavity No. 2. The horizontal line at
. ' 'S, /L2=4/9 ds to th des of th .
=0, u'#0 (O p#0, u'=0), LIAN=6. If p#0, u'#0, L/IAy=8. corresponds to the modes ot the square

fied framework a mathematical fractal would present infiniteresonators being small. To characterize mathematically the
losses for all these modes as far as our model for the dampecalization or the confinement of each modlg, we com-

ing still holds. Although somewhat trivial, this statement is pute the “existence surfaceS, defined by Thouless S
important and confirms the influence of fractal geometry on

damping. Really, for high enough generation, the smaller S = fdx dy|w |4 -t (13)
cutoff would become smaller than the boundary layer and the "
problem has to be reconsidered.

More interesting are the higher-order modas+Q) If we find thatS, is significantly smaller than the surface
which are of two types: those with=0 and those witim L2 of the cross section, we say that this particular mode is
#0. If m=0 the integral in Eq(7) factorizes agls=Ldl, “localized.” Note that for the delocalized cosine functions

whered| is the differential element along the perimeter of aof the square Zsystem, the value of the relative occupation
horizontal cross section of the cavity. For these modes thgurface isS,/L“=4/9~0.44 for all modes.

integral for the losses takes the form The values of the relative existence surfeggL? for
our geometries are shown in Fig. 4. Apart from the very first
1/AN:f dI|\I’ﬁ(x,y)|. (12) states, the existence surface is _onIy a fraction of the total
perimeter surface of the resonator. Most important, the tendency to

If m#0, the integral in Eq.(7) factorizes asds localization is increased by the irregularity of the frontier.

B 2 .

=(L/2)dI and the losses are simply smaller by a factor of 2For generation 1 the averads,/L") over the first 20.0
than those obtained from E€L2). The integral in Eq(12) is lower states was ;‘ound to be equal to 0.35. For generation 2,
the quantity that we actually compute from the knowledge oIIhe avgragdsn/ L?) over the .200 states that we ha}ve com-
the amplitude distribution of the 2-D Neumann fractinos. pgted IS equal t 0.24. The highest degree of localization for

The results are shown in Fig. 3. For prefractal cavitiest_h'6slsg;’te(';1 IS iquilj to 0'0::’11 for the degenehrated modeg
the results indicate that the power dissipatjfor constant ~ ~ < ne shou hote that our s_ystems_ ave aro tation
e(w)] is increased by the irregularity of the frontier in a degeneracy which has the effect of Increasing _the existence
manner which is roughly proportional to the length of thevolulrgeb. W'thOUt_ anyl s¥/mm(_atry the Iltl)callzauon surface
perimeter,as for the trivial modesFor a few states, the woul F('a agpromr‘p‘ate yh our t|r?esdsn(1j§ e_rt.) . f 2 del
prefractal systems exhibit still higher losses; for example, see i nd |g;4we3 C;WT € ?m%ltu 3 'StTGUt'_?_E ora .elo—
states 61-68 of cavity No. 2. The higher losses for thesfg)a |zt<_a (nf— ) ?n ; a gca_lz?. ing tthh I\)I € spagua d
particular states are due, as shown below, to the localizatio cation of confined modes 1S linked to the Neumann bound-
of these states in small regions near the cavity walls. ary condition for which the boundary region is free to vi-

brate. Eigenmodes can then have a maximum amplitude at
V. RELATION BETWEEN LOCALIZATION AND the boundary. The confinement is a weak localization effect
LCSSES which does not occur for all states. When the fractal charac-
ter of the frontier increases, i.e., from one prefractal genera-

In this section we discuss why the confinement of ation to the next, we find more and more of these localized
vibration in a restricted part of the cavity near the boundarystates. This is an important property of the Neumann
increases the damping. The localization characterizes the imodest? Qualitatively, the more irregular and winding the
regular distribution of the vibration amplitude and was stud-boundary, the more localized the Neumann fractinos. We
ied in Ref. 12. It was found that a number of modes wereexpect a similar behavior for systems which are irregular in
confined at the boundary, the amplitude the inner part of th¢he three spatial directions.
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O n=4;m=0 FIG. 6. Dissipation versus localization. The losses increase from one pre-

fractal generation to the next, while the localization volume decreases.
States 61-68 of cavity No. 2 which are strongly localized have the largest
losses.

numerical value id./A =35, in good agreement with our
crude approximation. This approximation also applies to the
strongly localized states 61-68 of system No. 2. These
states, which are discussed in Ref. 12, have the highest
losses.

The power dissipation as a function of the relative exis-
tence surface is shown in Fig. 6. In spite of a strong disper-
sion, the global trend is indeed an increase of the losses with
irregularity and localization.

Equation(14) is of extreme importance because it shows
that for a given localized mode, if one locally increases the
perimeter, the losses are increased correspondingly. It means

n=16:m=0 .that a mathemgtical fractal would .also exhibit infinitg (_jamp-
! ing for these higher-order modéwith the same restrictions
FIG. 5. Two particular modes of the prefractal cavity No.(&. Mode n than abovk . . .
=4, m=0; (b) moden=16, m=0. The amplitudes are indicated by differ- The quahty factor for a mod& can be written in our

ent gray levels. Black and white regions stand for extremum positive andeduced units:

negative pressures. The gray tones stand for low pressures. (doidean

example of delocalized state, while mo@® is an example of localized Qn=m(QNAN/L)/[Re €(wy)]. (19
state. Localization occurs at the cavity boundary. The dashed line indicat . . .

the perimetet ;, of the zone where the mode is confined. Itis also the regio:\?\/e have plotted in Fig. 7 the numerical values of the factor
where the energy is dissipated.

Min

a4 2 e —
The effect of localization is to enhance locally the am- :z I ¥ No. 1 -
plitude of the vibration at the cavity walls in the region & - 9/6\ o’ ]
where the energy is dissipated. There exists a correlative 1.5+ Qrss ° 3 ]
increase of the integral in Eq12). If, in a very crude ap- r 3 8o ]
proximation, one considers the mode as constant over its L o o"o g’_;g go‘;? b
existence surface and zero outside, its amplitude is of order r o 02 S 8 i
S, 2. Integral(12) gives a value : y @00800 %)@G%_o_._‘o‘%f "|.-'-*-' :
AN=S L, (14) 05 - e g;-..é.-.'; v \ ]
. . i i ’, No.2 ]
whereL , is theperimeterof the zone where the states really L B &‘a by ]
exist. 0 e e
Consider for instance mode= 16, shown in Fig. &). 0 5 10 15 o 20

Its existence volume is approximately given by the surface of

the black and white region§ns4><8(L/16)2= L2/8. The FIG. 7. Quality factor, measured yyA /L, of the low-frequency modes
.with m=0 as a function of the reduced frequerfeyFor the cube the values

perimeter of the zone where 'Fhe amplltude' is large, as |nd|6f QA /L are equal ta,J6 for the modesu—0, ' %0 (or ©#0,
cated by the dashed contour in the figure, is of oldgx 4 =0) and are equal t6),/8 if w#0, u’#0. This is indicated by the two

X 15(L/16) and from Eq(14) L/An=30. For this mode the lines. The higher the geometrical irregularity, the lower the quality factors.
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QyAN/L as a function of the reduced frequer@y, for our  formed at the “Institut du deeloppement et des ressources
three cavities. One observes that for all frequencies the iren informatique scientifique(IDRIS) in Orsay, France.
regular cavities present lower quality factors than the cube.

Despite the dispersion, increasing the irregularity induces a

diminution of the quality factor.
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