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Irregular and fractal resonators with Neumann boundary conditions:
Density of states and localization
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Vibrations of two-dimensional systems with free irregular or fractal boundaries are studied on specific
examples. The eigenmodes are calculated numerically using an analogy between Helmholtz and diffusion
equations. We discuss the influence of the fractal boundary on the low-frequency part of the spectrum and on
wave forms. The density of states is increased by the irregularity and exhibits oscillations at special frequencies
which depend on the geometry. Surprisingly, many states are found to be confined at the fractal boundary.
Increasing the perimeter fractality induces increased confinef@&h®63-651X97)04402-4

PACS numbeps): 61.43.Hv, 43.20+g, 63.20.Pw, 63.56:x

INTRODUCTION optical properties of porous silicdi4,15.
In this paper we consider the vibrations of a two-
How do the properties of vibrational excitations relate todimensional system obeying the Neumann boundary condi-
the geometry of resonators? The answer to this question #on
important from both the fundamental and practical points of
view because systems with strongly irregular geometries are
ubiquitous in nature. The emergence of fractal language per-

mits one to discu;s this question in a well-defined and docur'epresent the transverse acoustical phonons of a two-
mented geometrical frameworl]. Not only does fractal gimensional irregular crystallite. They also represent higher-
geometry permit a description of strong statistical irregular-rger modes in acoustical waveguides with irregular or frac-
ity but it also allows one to consider deterministic fractals asg| cross sections and infinite wall impedance. In that case
simple models for extreme geometrical disorder. If the physithe variableW corresponds to the pressytes).

cal properties of the objects that we consider are due to the This paper presents a study of the low-frequency
hierarchical character of their geometry, then their physicakigenmodes—DOS and wave forms—of the six structures
properties can be studied on deterministic fractal objits  shown in Fig. 1. Systems No. 0—No. 2 are a square and two
This is, for example, the case for self-similar electrodesprefractals of generation 1 and 2. They hav@ asymmetry
where the study of deterministic systems is readily appli-and the corresponding degeneracies. The nonsymmetric sys-
cable to random self-similar structurgsj. tems No. 3-5 have no degenerate states except for accidental

The idea of studying the density of stat&¥0S) in fractal ~ degeneracy.
resonators is due to Berfy]. He formulated early conjec-
tures about the density of states in the asymptétigh- GENERAL METHOD
frequency limit. Since then these conjectures have been
modified[5]. Mathematical aspects of these questions can bq.h
found in Refs[6-8].

Two types of resonators can be considered: mass fracta,
and surface fractals. Their vibrations are, respectively,
named “fractons”[9-11] and “fractinos” [12,13. In the AW = (1/c?) 2/ t2 ©)
latter reference one can find an experimental and numerical

study of the vibrations of a fractal drum. In such a drum, theysing condition(1) on the boundary. Here is a wave ve-
vibrating membrane is supported by a fractal perimeter angbcity. Instead of Eq.(2) we consider the time-dependent
the amplitude of the vibration is kept equal to O on the conjffusion equation on the same domain:
tour. The modes which are solutions of the Helmholtz equa-
tion with the Dirichlet boundary conditioW =0 are called DAV =9¥/dt, 3)
“Dirichlet” fractinos. These Dirichlet fractinos are also so-
lutions of the Schrdinger equation in a two-dimensional whereD is a diffusion coefficient. In Eq(3) ¥ represents a
guantum well with the same geometry. Their study can beoncentration of diffusing particles which may be positive or
used to understand the properties of small irregular quantumegative and conditiofil) corresponds to reflecting bound-
dots or wires. For example, they can help to explain electroaries. The general solution of E@) is a combination of real
exponentials whereas that of E() is a combination of
imaginary exponentials. Both Eq&) and (3) lead to the
*Electronic address: sr@pmcsuni.polytechnique.fr same eigenvalue problemM¥ =—(w?2/c?)¥, or AV,
TUunité associe du CNRS No. 1254. =(Dr,) ¥, with the correspondence

d¥/dn=0. (1)

These modes, which we call “Neumann” fractinos, could

We first recall the numerical method used in Rief2].

is method is based on the correspondence between the
ave equation and the diffusion equation. We wish to solve
e Helmholtz equation
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mentation of the above equations was made using a finite

- —r—l_r— difference method and is discussed in the Appendix.
L With Neumann condition a trivial eigenstate with zero
—— frequency always exists. It represents a uniform translation

of the system. This is the only state with nonzero integral, as
shown by integrating the equatidn¥' = — (w 2/c?) ¥, over
the domain and applying the divergence theorem. We find

No.0 No.1 No.2 using Eq.(1)
. f fVA\Ifndx dy= —(wﬁ/cz)f qufndx dy
=frv~1rnd|=o, 6)
No.3 No.4 whereT is the perimeter of the system. As2/c? is nonzero

for all eigenvalues, except the first one, all higher eigen-
modes have zero integral over the domain.

THE LOW-FREQUENCY DENSITY OF STATES

All our resonators have the same area and to discuss the
results on a single scale we use as a frequency unit the lowest
eigenfrequency of the square initiator. The modes of a square

No.5 with sideL are labeled by the number of half wavelengths in

the x,y directions u,u’'=0,1,2,... with eigenvaluezoi u

FIG. 1. Systems under study: Top: The generator for the fractaF (m°c/L?)(u?+ u'?). We therefore use in the following a
geometry and the prefractal systems No. 0, No. 1, and No. 2. Théeduced frequency)=w/w, o Where w; g=mc/L is the fun-
area is conserved through the iteration process. The fractal dimeglamental  frequency of the square for which
sion of the perimeter i®;=In 8/In 4=3/2. Middle: Systems No. 3 Q(u,u’)=(u?+u'?).
and No. 4 where the fractal generator has only been applied to two For a discretized square of side=Za (Z segments per
neighboring sides of the square initiator. These geometries correside) the exact eigenvalues af&7]
spond to a quarter of the systems No. 1 and No. 2. Bottom: The 5
nonsymmetric system No. 5. It is built with segments of length 0.5, Q5 (p,p")=[2(Z+ 1)2/772]{2_ co§ mul/(Z+1)]

1, and 1.5. The last three systems have no symmetry degeneracy. —cofmu I(Z+ D)} )

(D7) " t=w?ic?. (4)  They converge td(u,u')=(u?+u'?) whenZ goes to in-
finity. We therefore can use Eg7) to test the accuracy of

Here 7, is the decay time constant of the diffusional eigen-our results as discussed in the Appendix.
stateW, and w, is the frequency of the corresponding vibra-  We have computed the lowest eigenvalues for the systems
tional eigenstate. shown in Fig. 1(up to 100 or 200 statésThe 20 lower

We compute the time-dependent solution of B), start-  €igenvalues for systems No. 0-2 are given in Table | in the
ing with an arbitrary initial functiorzy(x,y,t=0). The sys- Appendix. In our computation we have usge-64 for sys-
tem will then converge to a function proportional to ttm No. 0. The systems No. 1-4 were computed with
Wo(x,y)exp(—t/7), yielding the first eigenstately(x,y) Z=128. The system No. 5 was computed with the same grid
with eigenvalue I, [and w, through Eq.(4)] [12]. Numeri- ~ density.
cally, this is verified by controlling the diffusion process un- ~ The numerical results for the integrated DOS of systems
til the function z(x,y,t) decays everywhere exponentially No. 0—2 are shown in Fig. 2. The integrated DOI$X)
with the same time constant. Then to compute the next statélenotes the counting function which is the number of eigen-

we start with a new function values (including multiplicity) of the equatiom”A¥=—XW¥
smaller thanX. For a two-dimensional membrane, Weyl's
zy(X,y,t=0)=24(X,y,t=0) conjecture5,6,8 can be written, with our units
N(Q2)=(m/4)Q2%+c(Q?), (8
—‘I’o(X,Y)f Wo(X,Y)Zo(X,y,t=0)dx dy, with the correction term
) C(Q?)=(L/4L)Q + (higher-order terms 9)

which is orthogonal to¥y(x,y). The new distribution con- L is the length of the resonator perimeter. The relative con-
verges to the next eigenfunctioh,(x,y). The procedure is tribution of the correction termC(Q?) tends to 0 when
then iterated by orthogonalization of the+1)th initial dis-  Q?—o0. Note that Eq(9) cannot be used for a mathematical
tribution to then previous eigenfunctions. Numerical imple- fractal resonator of infinite perimeter. In this ca3€2?) has



55 IRREGULAR AND FRACTAL RESONATORS WIH ... 1415

250 No. 1 —>r,
< o K
Q20 No.2  # ZF
> No. 0
Z 1s0| >y’
100} A
"
sof
0 | {
0 100 200 52 300

FIG. 2. Integrated DOSI(Q?): From bottom to top: discretized
square(system No. O prefractal systems No. 1 and No. 2. The
values calculated from the Weyl approximatifdfgs. (8) and (9)]
are indicated by the continuous lines.

been proposed to be proportional &P where Dy is the

i o . ) a' (b)
Minkowski dimension of the perimetgb,6,18. We do not N @) Y o
expect to really measure this effect here as our prefractal 2~ 2~
systems do not exceed the second generdfigh ) e

Note that Eqs(8) and(9) have been derived for continu-
ous systems that are not exactly equivalent to our discretized
systems. Furthermore, they are supposed to be valid in the
asymptotic limit corresponding to small wavelengths. But
this limit does not exist in discretized systems which have a
cutoff frequency atw.,=(8k/m) Y2 A partial theoretical
analysis of the spectrum of a discrete system has been pro-
posed by Fishef19], but does not lead to an equivalent of
Weyl's formula for discrete lattices. FIG. 4. Two examples of localized stategay-staten=17; (b)

In Fig. 2 we compare the computed integrated DOSstaten=64. The amplitudes are indicated by different gray levels.
N(Q?) of the prefractal systems No. 0—2 with the predictionsThe black and white regions stand, respectively, for positive and
of Egs.(8) and(9). There are two main effects. First, despite negative amplitudes. The gray tones stand for nearly zero ampli-
the discrete character of our systems, the DOS verifies apude. In(@’) and(b") we show how we estimate the half wavelength
proximately Weyl's conjecture. There is a marked increaseJ/2 by the path lengttC, leading from positive to negative ampli-
of the DOS as we pass from system No. 0 to No. 2 due to th&ude regions. Regions like; andP, may sustain quasidegenerated
increasing length of the frontier. This result confirms a recengigenmodes.
observation by Hobiki, Yakubo, and Nakayari8]: the
density of states of the Neumann problem is not solely dequasidegenerated states. To discuss more precisely the effect
scribed by the first term of Eq8) as used if20]. of the different geometries, we present in Fig. 3 the correc-

Secondly there exist steplike increases of the DOS at spdion termCyq «(Q?) given by
cial frequencies. These jumps reveal the accumulation of Cro. (O =N(Q)r. x—N(Q)ne. o, (10)

whereN(Q?)y,. o is the numerical DOS for the squafeal-

>0 culated for the same values 6F by a linear interpolation
40 Fir ol fu i#e No. 2 fit).
~30 L AT ¥ The correction term presents oscillations. For system No.
a 20 m_,' 1 these oscillations correspond to values(Ifthat can be
S| i 't‘_° 1 simply identified. Coming back to the definition of
10} o f 5 |7 7 2} O?=w? w3 o= (2mc/N)?/(mc/L)?=[LI(\2)]* we find
0 é,«?v 'Em,;m ' N that these remarkable values are locate@at4?, 8, 12,
[N . A No.5 16%. They correspond to excitations with one, two, three, or
1o 42 8? 1 22 162 four half wavelengths in the smallest pores of width.
-200 “““““ 160 e 2(‘)0 T This behavior apparently recalls that of stable orbits in quan-

QZ

tum chaod21]. In this frame there should exist an accumu-
lation of states of wavelengths corresponding to simple

FIG. 3. Correction ternCy, (02 for systems No. 1, No. 2, and Stable orbits of the classical system. In system No. 1, the
No. 5 obtained from Eq(10). For systems No. 1 and No. 5 the observed accumulation of states is apparently due to the ex-
oscillations indicated by the arrows correspond to values ofistence of eight identical pores of widthi4. This causes the

0%=L/(\2)=4, 8, 12, 16.

quasidegeneracy that we observe. For each oscillation, the
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FIG. 5. Histograms of the level spacing Q?),=(Q 2, ;—Q2) between neighboring eigenvalu¢a) Symmetric prefractal system No.
1; (b) symmetric prefractal system No. &) quarter prefractal system No. @) quarter prefractal system No. 4.

increase ofC(Q?)y,, 1 is of the order of 10, a number com- LEVEL SPACING DISTRIBUTION
parable to the number of identical pores. For comparison we
also calculated the correction ter@(Q?)y, s=N(Q?)y,. s
—N(Q?)y, o for the 120 lower states of system No. 5 which
has only four pores of width/4. Indeed we find fluctuations
at the same frequencies but with about half the amplitude.

Besides an accumulation of eigenstates at certain frequen-
cies, we find occasionally very large distances between
neighboring frequencies. This fact has to be considered in
the framework of quantum chaos studies. The level distance
statistics is an important tool to separate chaotic from regular

WeFtor:esrgfsct)(reemesoéczt'grleo;véﬁrztigatsgfe:sg%”fjtFt)rc:if;\glie systemg[21]. In Fig. 5 we show the statistics of the level
P ’ spacing 00?),=(Q2,,-02) in the form of histograms

is beyond our calculated values. We think that the minor : o . .
L . - ounting the numbeN of values(AQ)?), in a given interval.
oscillations that we observe for this system are reminiscen ; X
In Figs. 5a) and 3b) we show the histograms for the

of the L/4 pore of the first generation disturbed here by thesymmetric systems No. 1 and No. 2. In these cases the values
second-order pattern.

2y
Furthermore, there exist two steplike increases of theOf (4),=0 due to the degenerated states have been

DOS around?~7 and 02~37. One can understand these dropped. The spacing distribution of the symmetric systems

; etrib it 2 _ 2
steplike increases by looking at the amplitude distributionsresembles the Poisson distributic( ALk )O.Cexd (207
of these eigenmodes: all modes wifi~7 and all modes generally expected for regular, nonchaotic systems. How-

with 02~37 look very similar and are localized at the ever, theC, symmetry of our prefractal systems disturbs the

. . statistics as our data contain four series of eigenstates of
boundary. We show one example for each frequency in Figs

4(a) and 4b), where the amplitudes are indicated by differentdlfferent ;ymmetry which overlap. .
. : . For this reason we also computed the eigenstates of sys-
gray levels. The black and white regions stand, respectlvely[,

. , ) ms No. 3 and No. 4. Their spacing distributidfigs. 5c)
for positive and negative amplitudes. The gray tones stan nd 8d)] shows a remarkably different behavior. First, the
for nearly zero amplitude. For these states, the half wave-

maximum ofN(AQ?) is shifted from zero to higher values

length should be of the order of the length of the path i the probability of finding very small level differences
connecting nearest black and white extrema. To illustrate thi§gteen neighboring states is considerably diminished. Sec-
idea we have drawn n F|gs.(d)2 and 4b’) paths which  onq)y the probability of finding very large level spacings is
satisfy approximatelf)®~7 and)"~37. In Fig. 4&), LS smaller for the nonsymmetric systems. Consequently,
about 3./8 and[L/L]? is of order 8. The patfC shown in  N(AQ?) is closer to the Gaussian orthogonal ensemble,
Fig. 4(b’) corresponds toL/L]~35. which is typical for chaotic systemi®1]. Note that eigen-

The accumulation of states for these special valueQf  states with very close frequencies are still present in the non-
reflects both the symmetry degeneracy and the fact that r&symmetric systems due to the existence of nearly equivalent
gions near the frontier may have similar shape and size evemgions likeP, andP, in Fig. 4. This is not the usual behav-
if not equivalent under a symmetry operation. For examplejor of chaotic systems, which should show a “level repul-
regions P; and P, in Figs. 4a and 4b) may sustain sion.” For a random irregular system the quasidegeneracies
quasidegenerated eigenmodes. This accumulation shoussociated with the similarity betwed®, and P, regions
therefore be a general feature of deterministic fractal strucshould disappear and the level repulsion should be more ap-
tures, as discussed in Ref48, 22, 23, but should not exist parent.
in random fractals. Indeed our prefractal systems are pseudointegrable in the
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FIG. 6. lllustration of the beam splitting at a salient corner ina  FIG. 8. Relative existence volumé,/V,, for the first 100 states
prefractal billiard. Depending on whether a particle arrives on the®f systems No. 1 and No. 5. The value 4/9 for squaie. 0) is
left- or on the right-hand side of the corner, it is reflected in two indicated by the dashed line.
different directions.

V=

-1
> azlwn,il4> : (11)

sense of Richens and Berf24,25. The term “pseudointe- ,

grable” describes billiard problems in two-dimensional
polygon enclosures whose angles are rational multiples of wherea is the lattice constant and,, is normalized by
and which have the additional property of “beam splitting.”
This means that neighboring trajectories can split at salient
corners as illustrated in Fig. 6. It was shown that for two-
dimensional(2D) pseudointegrable systems, the trajectories
in phase space are restricted to two-dimensional surfaces—as The volumeV,, of a normalized constant functidglike the
for integrable systems—but these surfaces do not have theivial mode is equal to the product af? by the total num-
shape of tor{24]. The behavior of pseudointegrable systemsber of particles. For a square with segments per side,
can be considered as intermediate between regular and cha; ;=a~(zZ+1)"* and Vy=a?(Z+1)?=L? If we find
otic. There is an apparent correspondence between the spahatV,, is significantly smaller tha, we say that the cor-
ing distribution we found and the pseudointegrable charactefesponding state of indem is “localized.” Figure 7 gives
of our systems. By going from one prefractal generation tahe values of the relative occupation volude/V, of the

> v, [?=1. (12)

the next, the chaotic behavior should increase, as more arfitst 200 lower states for the symmetric systems No. 1 and
more salient corners appear.

WAVE FORMS AND LOCALIZATION

No. 2. Figure 8 gives the values for system No. 1 and for the
nonsymmetric system No. 5. In both cases the results show
that, apart from the very first states, the existence volume is
only a fraction of the total surface of the resonator. In our

~ In this section we discuss the confinement of the vibrasystems the tendency to localization is increased by the ir-
tions. To characterize mathematically the localization or theegularity of the frontier. Increasing the fractality has quali-
confinement of each state we compute, following Thoulessatively the same effect on localization as lowering the sym-

[26], the “existence volume™V, of a given stateV,, by a

sum on the lattice sitels

0

metry. This important result confirms that deterministic
fractality has the same qualitative effect as disorder.

For the symmetric system No. 1 the avergye/Vy) is
found to be equal to 0.35. The corresponding value for the

zc delocalized cosine functions of the square V§/V,

: 1 =4/9=0.44 as indicated by a dashed line in Figs. 7 and 8.
E sl The highest degree of localization is found for system No.
S B 2, for which the smallest valu¥,/V, is equal to 0.031 for

: 06l No. 1 degenerated states=62, 63. The average value ¢¥,/V,)

2 o ® 5 R Y over the 200 lower states is equal to 0.24. For the nonsym-
2 04 AR —@O;Q%O;D PR @MZO%% metric system No. 5, the smallest valuewgfV, is 0.088 for

X ‘30 0%, _“D_"‘W’ S s state indexn=62 and the averag@/,/V,)=0.28.

g 021 AL S o o Y We now discuss the spatial location of the modes.
= T ta No.2 7 i Whereas Dirichlet fractinos decay very rapidly towards the
E 00 40 80 120 160 200 boundary[12] Neumann fractinos have the opposite ten-

FIG. 7. Relative existence volumé,/V,, for the first 200 states

State Index n

dency: as the boundary is free to vibrate, eigenmodes can
have a maximum amplitude at this location. The existence of
these states can be understood from the observation of region

of systems No. 1 and No. 2 computed from Eds) and(12). The
value 4/9 for the squaréNo. 0) is indicated by the dashed line.

P, of Figs. 4a) and 4b). For such states, the diffusion from
regions with positive concentration towards regions of nega-
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6600000000000000000XXRRX spring constantfor the small crystallite partially depicted by Fig. 9,

0000000000000000000X
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0000000XXX00000XXXOXXX bottom. The horizontal coordinate is given in computer units as
oSOk KON Xox™X discussed in the Appendix. The dashed line represents Weyl's lead-
0000OXXX XXX XX .

0o0000X%X Ing term.

derstanding the vibrational properties of strongly inhomoge-
neous solids like demixed glasg4&¥]. In such binary solids,
FIG. 9. Top: Scheme of a dense material with irregular or fractalthere exist separatedlandB regions, pr'nC'Pa"_y mgde.up of

interfaces. Bottom: Partial scheme of the atomic structure of a crys® atoms orB atoms. Although the mass distribution is non-

tallite with geometry No. 2 with three atoms on the smaller cut-off. fractal, the internal interfaces between theand B regions

For a Dirichlet crystallite the perimeter atoms, here represented bynay be irregular and even possibly fradta8,29. The dis-

bold X, are kept fixed. For a Neumann crystallite the perimetercussion that we present below has been suggested by the

atoms are free to move. observed anomalous vibrations in the amorphous superionic
glass(Agl),(Ag,0,B,05), _« [30,31. This glass is a collec-

efiion of irregular domains principally composed of Agl and

SAgzo,Bzog and could present irregular interfaces between

compatible with a large concentration near the boundary‘.jomams' The extremely high ionic conductivity shows that

S . ;
Most of the localized states are located in this manner neéper'fg ions (at IeiSt mhthe Agl regionsare weskly COUplﬁd
the frontier. In the vibrational picture, one can think that 1 the cage. One has then a strong contrast between the cou-

pling constants of the different atoms.

tive concentration occurs between neighboring pores. Th
a small particle concentration in the interior of the system i

waves being excited in the small pores are submitted to mul h > ¢ hah hetical id i
tiple diffraction which may cause partially destructive inter- hA schematic picture of such a y%Ot ;‘“‘}‘T" 2D Sr? id is
ferences in the central region of the system. This is a weaROWn In Fig. 9, top. As represented, the figure shows a

localization effect which does not occur for all states. NoteC'yStalline arrangement but we keep in mind a disordered

that if no rotation degeneracy existed, the localization vol-Structure. We have computed the vibrations of a 2D structure

ume for these states would be typically four times smaller" ,WhiCh Dirichlgt and Neumann fractinos can both exist.
than the values found in system No. 2. This is the case if the local vibrational propertiesfoindB

When the fractal character of the frontier increases we
find more and more surface modes. This is an important
property of the Neumann fractinos. Qualitatively, the more
irregular and winding the boundary, the more localized many 0
of the Neumann fractinos. We expect a similar behavior for =
3D irregular systems. As these modes represent transverse - Debye slope
acoustical phonons, the increased localization may show up 10° \
as a decrease of the heat conduction of irregular crystallites
at low or average temperatuf€<50 K). Due to localization
near irregular boundaries, Neumann fractinos should not
propagate as ordinary phonons and the heat conductivity of a

104 TT T 1171 T T 1 T T 1717

\\I\IHl
I\\\HI‘

small crystallite should depend on its geometrical irregular- 102 s Ll L
. . -1 1 0 1 1
ity 10 0 o 10
DISCUSSION OF SMALL IRREGULAR CRYSTALLITE FIG. 11. Differential density of states of a collection of Dirichlet
VIBRATIONS crystallites(with soft springg and Neumann crystallite@vith stiff

o springs. The dashed line indicates the usual Debye slopa=ir2.
The modification of the DOS due to the resonator shapeyote the break around=3. The horizontal coordinate is given in

also observed for Dirichlet fractind4.2], could help in un-  computer units as discussed in the Appendix.
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TABLE I. The lowest eigenvalues of several vibrating systems under Neumann boundary corfditions
reduced units The first column(a) gives the indexor integrated DOSof the state. Columiib) gives the
exact eigenvalues for the continuous square. Col(zhgives the exact result from E¢p) for the discretized
square withZ=64. Columng(d), (e), and(f) give, respectively, the numerical eigenvalues for system No. 0
with Z=64 and systems No. 1 and No. 2 wifh=128. Tables giving the ensemble of our results are available
upon request.

@

(b)

(©

(d)

(e

(®)

Index  (u2+u'? Eq. (9) No. 0 No. 1 No. 2
1 1.0 0.999 805 348 0.998 053 50 0.395 335 034 0.309 143 059
2 1.0 0.999 805 348 0.998 053 50 0.395 335 034 0.309 143 059
3 2.0 1.999 610 70 1.999 610 70 0.485 888 934 0.363 068 740
4 4.0 3.996 886 30 3.996 886 31 2.061 221 08 1.501 785 36
5 4.0 3.996 886 30 3.996 886 31 2.454 292 45 1.727 122 82
6 5.0 4,996 691 65 4,996 691 65 2.454 292 45 1.727 122 82
7 5.0 4,996 691 65 4,996 691 65 2.471 316 62 1.736 189 83
8 8.0 7.993 772 60 7.993 772 59 2.699 429 97 1.928 338 50
9 9.0 8.984 243 04 8.984 243 04 5.389 272 47 3.979 217 83
10 9.0 8.984 243 04 8.984 243 04 5.389 272 47 3.979217 83
11 10.0 9.984 048 39 9.984 048 37 7.080594 34 4.493 104 96
12 10.0 9.984 048 39 9.984 048 37 9.086 646 92 5.150 89391
13 13.0 12.981 129 3 12.981 1294 10.710 063 5 6.394 524 87
14 13.0 12.981 129 3 12.981 1294 10.710 063 5 6.394 524 87
15 16.0 15.950 227 4 15.950 227 3 12.6293518 6.827 878 37
16 16.0 15.950 227 4 15.950 227 3 15.713986 0 6.829 816 12
17 17.0 16.950 032 7 16.950 032 7 15.913 2580 6.829 816 12
18 17.0 16.950 032 7 16.950 032 7 15.913 2580 6.833 741 60
19 18.0 17.968 486 1 17.968 486 1 15.694 466 1 6.839 132 75
20 20.0 19.947 1137 19.947 1137 16.159 403 6 6.839 132 75

are strongly contrasted, for example, if theA and A-B a<2). For higher frequencie@bove 1 meYthe observed
springs are very soft and tH& B springs very stiff. is larger than 2 and the DOS increases faster than in the
First, we compute the Dirichlet and Neumann fractinosordinary Debye 3D case. At still higher frequencies the DOS
DOS (with the samespring constank) for a single 2D crys-  is compatible with the fracton density of states.
tallite with geometry No. 2 and having only three atoms on Another possible consequence of the existence of Dirich-
the smallest segment. A part of this structure is depicted ihet and Neumann fractinos could be to lower the heat con-
Fig. 9, bottom. Note that we are computing here a naturallyuction. Because Dirichlet fractinos have a tendency to be
discretized atomic structure. The results are shown in Fig. 1pcalized in the internal region of the resondtb2] and Neu-
together with the Weyl leading term which represents thegnann fractinos are localized near the boundary, their cou-
classical Debye behavior and neglects both crystalline disPling should be small. Hence one predicts that the existence
persion and irregularity. One observes that the Neuman@f such internal irregularity should contribute to lower the
DOS is always larger than the Debye DOS while the Dirich-heat conduction.
let DOS is smaller at low frequency. These data cannot be
simply extended to the case of a real 3D material because of
the existence of various modes and polarization of vibrations
in solids. We have studied vibrational modes of 2D irregular struc-
Instead, from the data of Fig. 10 we compute the differ-tures obeying the Neumann boundary condition. There are
ential DOS of a collection of one Dirichlet 2D crystallite two main effects due to the boundary irregularity.
with spring constark (supposedly representing the Agns First there exists an increase in the density of states in
in Agl) and ten Neumann 2D crystallites with spring con- agreement with Weyl's conjecture but presenting strong os-
stant % (supposedly representing the rest of the glafke cillations in deterministic prefractal geometries. Second and
result is shown in Fig. 11. One observes a break in the DO®ore surprising, we have found many modes which are con-
curve. At low frequency the average slope is slightly smalleffined near the fractal boundary. This localization effect in-
than the Debye slopeequal to 1 ind=2) while abovew~3  creases from one fractal generation to the next, even for de-
the DOS presents a more rapid dependence. This behaviderministic prefractals. This shows that fractality has the
although 2D, is similar to the behavior of the DOS of same qualitative effect as disorder.
(Agl),(Ag,0,B,05), _, determined by inelastic neutron scat-  This localization should exist in irregular acoustical cavi-
tering [30,31]. This material presents an anomalous DOS:ties where the acoustic pressure obeys the Neumann condi-
below 1 meV it exhibits an under-Debye behavia® with  tion on rigid boundaries. A straightforward example is an

CONCLUSIONS AND OUTLOOK
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TABLE Il. Comparison of the eigenvalues computed using pre-Ressources en Informatique ScientifiqugDRIS) in Orsay,
determined precision and predetermined number of steps. The cdkrance.
culations are performed on the prefractal system No. 2 @it64.

In the first column the iteration process has been continued until a
predetermined precisiah=0.5x10"® has been reached. In the sec-

ond column the iteration process is automatically stopped after

5020 000 iterations. The subcolumns indicate the number of itera- \We compute the time evolution of the numerical solution
tions and the respective eigenvalue. It can be seen that the fewf Eq. (3) on a discretized grid until we obtain everywhere a
states with restricted number of iterations show comparatively |arg%ing|e exponentia| decay_ Our precision criterion is the com-

APPENDIX: COMMENTS
ON THE NUMERICAL METHOD

errors but that this does not modify higher eigenvalues.

parison of the time evolution of the concentratidmn on the

@

(b)

different grid sites, which we compute until it is the same
everywhere within a predetermined relative erfgrgener-

State lterations 0? lterations 0?2 ally chosen ag\=0.5x 107°[12]. o o
The computer time stefihe relative increase in time be-

60 780000 34.0699016 780000 34.0699016 tween two consecutive readjustments of the value¥ it

61 65760000 34.8162745 5020000 34.8174346 the lattice siteswas chosen equal ta/10 wherer is the

62 151760000 34.8179873 5020000 34.817857 8inverse of the jump probability per unit tim&. The diffu-

63 151760000 34.8179873 5020000 34.817 9512 sion coefficient ind=2 is given byD= a2/41-s and for a

64 28820000 34.8180837 5020000 34.818 3199 given stateW, the computer time constant, is given in

65 480000 34.8187199 5020000 34.818452 0 units of 7,. From the relation4) the corresponding eigen-

66 260000 34.8191771 5020000 34.818 715 4 Value isw z=4(74 7,)(c/a)? or w5=4/7, in computer units

67 260000 34.8191771 5020000 34.8187233 (C=1;a=1; 7,=1). Note that bothw? and 7, depend on the

68 320000 34.8236930 340000 34.823 6465 humberZ=L/a of segments on the side of the initial square.

69 260000 35.9182283 380000 35.9182283 The value of the fundamental time COﬂSta'ﬂI):LZ/’?TZD is

70 220000 368194750 1840000 36.819 4750 9iVen by(2Z/m?” in computer units. _ _

71 340000 37.411 4400 340000 37.4114400 Discretization in space introduces a difference with con-
tinuous systems. For the square, exact solutions exist for
both the continuous and the discretized cases and this differ-
ence is known exactly.

: ' ' ' : Numerical errors are due to convergence limitations. For

8 100000 424652720 100000 424652720 4o square, these errors can be monitored by comparing nu-

& 100000 43.286617 3 100000 43.286 617 3 mgrical values with the exact values from Ed). Table |
gives the 20 lower eigenvalues for the different systems.
Column(b) shows the values for the continuous square sys-

. . . . tem, column(c) the exact solution$Eq. (7)] for the dis-
105 1150000 79.0349793 1310000 79.034979 3 cretized square witZ =64, and column(d) shows the nu-
106 220000 79.339022 4 220000 79.339 022 4 merical values for the same discretized square. The first 20
107 220000 79.339022 4 220000 79.339 022 4 values for systems No. 1 and No. 2 are given in colut@hs

and(f). The difference betweed) and(c) is due to discreti-

zation. The comparison between exact and numerical

acoustic waveguide with prefractal cross section for whichvalues—columngc) and(d)—gives a measure of our preci-
many of the so-called higher modes would be localized irsion. The largest relative deviation is of order $0Even for
different regions.
Using our simple 2D results, we have discussed the poghe square. For example, for state number Q06 u'=11),
sible influence of the interface irregularities on the vibra-the exact value from Ed6) is 0%(11,10=236.353 204 932
tional properties of demixed binary solids. To the extent tha@nd its numerical approximation is 236.353 204 964. The

our conclusions still hold id=3, this gives a first hint to

higher eigenvalues the precision is very good in the case of

relative error of order 10% indicates the reliability of our

understand the anomalous vibrational properties of supefethod.

ionic glasses likgAgl),(Ag,0,B,035)1 .
The localization effects should also play a role in the heafluces a considerable increase in the computation time. If

conductivity of small irregular crystallites and contribute to there exist two state¥, and W}, with close time constants

lowering the heat conduction of binary glasses. The samé& and 7, and if we start with ' ,+W¥,) at timet=0, the

localization effects could play a role in the electron-phononfunction will be at timet equal to

coupling in irregular crystallites.
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For our systems, we observed that quasidegeneracy in-

\Ifaexq _t/Ta) +\I’bexq _t/Tb)
=(exd —t/7 ){V+Vpexd —t(ra— )/ Ta7pl}-

many iterations are needed before

L. Lapidus. One of ugS.R) has benefited from the E.E.C. exp[—t(7,— 7,)/ 727] IS Small enough to reach a single ex-
program “Human Capital and Mobility.” The computation ponential decay. Table Il gives the number of steps needed to
was performed at the “Institut du ™eloppement et des reach the required precision for system No. 2 with 64.
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States 61-68 are degenerate or quasidegenerate and requigenstates but linear-independent combinations of these
100-1000 times more steps than normal stafEsie degen- eigenstates. To compute théh eigenstaté¥,) we start with
eracy due to the system symmetry is not a difficulty if onean arbitrary functiorjz,) that we orthogonalize to all lower
starts with appropriate symmetrized functiddg].) stategX,). If |z,) is orthogonal to allX,), we have

To shorten the computation time we have restricted the
procedure to a predetermined limited number of steps instead
of predetermined precision. Doing that, we accept a lower
precision for the quasidegenerated states, hoping that this
will not modify higher states and eigenvalues as we discuss
below. The results are shown in Tabléh)l, where the num-
ber of steps was limited to 5020 000. Comparison of col-
umns(a) and (b) shows that, beyond state 69, there is very
little perturbation. We controlled this for about 200 states
with a precision of nine digits. These results indicate the
robust character of our numerical procedure. We found a
number of these quasidegenerated states for systems NoTRis set of linear equations with unknowks,|¥,) has a
and No. 5. Using a predetermined limited number of stepsionzero determinant because of the linear independence of
equal to 5020000 we computed 214 eigenstates withitthe vectorgX,). Hence the only solution i&,|¥,)=0 for all
about 10 h on a Cray C98 vector processor. v. Note that orthogonalizing,(x,y,t=0) to the normalized

In our method, the numerical eigenvalues anesultof  constant stat& is equivalent to subtracting its space aver-
the computation but do not enter into the numerical procesage (¥ from z,(x,y,t=0). For this reason we chose the
itself. To compute¥,,,; andQ2,; we do not need the first initial distributionzy(x,y,t=0) not as a constant.
previous eigenvalues or the previous eigenfunctions but In conclusion,as long as we are working in the same
only an orthogonal basis in the subspace generated by treubspacethe use of an eigenstate basis is not necessary.
true eigenfunctions. If we stop the computation before conRestricting the computation time induces errors for the ei-
vergence we obtain an orthogonal basis of functiongenvalues in this subspace, but does not induce errors for
IX,)=|c,¥1+c, ,¥ot+---+c,,_1¥, 1) which are not higher eigenvalues.

C1,UZn| W 1)+ C1 AZn| W)+
+ Cl,n—l<zn|lpn—l> = O'

Cn-1,€Zn| W 1)+ Cno1 AZ| ¥o) + -

+ Cnfl,n71<zn|q’nfl> =0.
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