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Irregular and fractal resonators with Neumann boundary conditions:
Density of states and localization

S. Russ,* B. Sapoval, and O. Haeberle´
Laboratoire de Physique de la Matie`re Condense´e, CNRS Ecole Polytechnique,† 91128 Palaiseau Ce´dex, France

~Received 28 May 1996; revised manuscript received 15 October 1996!

Vibrations of two-dimensional systems with free irregular or fractal boundaries are studied on specific
examples. The eigenmodes are calculated numerically using an analogy between Helmholtz and diffusion
equations. We discuss the influence of the fractal boundary on the low-frequency part of the spectrum and on
wave forms. The density of states is increased by the irregularity and exhibits oscillations at special frequencies
which depend on the geometry. Surprisingly, many states are found to be confined at the fractal boundary.
Increasing the perimeter fractality induces increased confinement.@S1063-651X~97!04402-4#

PACS number~s!: 61.43.Hv, 43.20.1g, 63.20.Pw, 63.50.1x
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INTRODUCTION

How do the properties of vibrational excitations relate
the geometry of resonators? The answer to this questio
important from both the fundamental and practical points
view because systems with strongly irregular geometries
ubiquitous in nature. The emergence of fractal language
mits one to discuss this question in a well-defined and do
mented geometrical framework@1#. Not only does fractal
geometry permit a description of strong statistical irregul
ity but it also allows one to consider deterministic fractals
simple models for extreme geometrical disorder. If the phy
cal properties of the objects that we consider are due to
hierarchical character of their geometry, then their phys
properties can be studied on deterministic fractal objects@2#.
This is, for example, the case for self-similar electrod
where the study of deterministic systems is readily ap
cable to random self-similar structures@3#.

The idea of studying the density of states~DOS! in fractal
resonators is due to Berry@4#. He formulated early conjec
tures about the density of states in the asymptotic~high-
frequency! limit. Since then these conjectures have be
modified@5#. Mathematical aspects of these questions can
found in Refs.@6–8#.

Two types of resonators can be considered: mass fra
and surface fractals. Their vibrations are, respective
named ‘‘fractons’’ @9–11# and ‘‘fractinos’’ @12,13#. In the
latter reference one can find an experimental and nume
study of the vibrations of a fractal drum. In such a drum,
vibrating membrane is supported by a fractal perimeter
the amplitude of the vibration is kept equal to 0 on the co
tour. The modes which are solutions of the Helmholtz eq
tion with the Dirichlet boundary conditionC50 are called
‘‘Dirichlet’’ fractinos. These Dirichlet fractinos are also so
lutions of the Schro¨dinger equation in a two-dimensiona
quantum well with the same geometry. Their study can
used to understand the properties of small irregular quan
dots or wires. For example, they can help to explain elec

*Electronic address: sr@pmcsun1.polytechnique.fr
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optical properties of porous silicon@14,15#.
In this paper we consider the vibrations of a tw

dimensional system obeying the Neumann boundary co
tion

]C/]n50. ~1!

These modes, which we call ‘‘Neumann’’ fractinos, cou
represent the transverse acoustical phonons of a t
dimensional irregular crystallite. They also represent high
order modes in acoustical waveguides with irregular or fr
tal cross sections and infinite wall impedance. In that c
the variableC corresponds to the pressure@16#.

This paper presents a study of the low-frequen
eigenmodes—DOS and wave forms—of the six structu
shown in Fig. 1. Systems No. 0–No. 2 are a square and
prefractals of generation 1 and 2. They have aC4 symmetry
and the corresponding degeneracies. The nonsymmetric
tems No. 3–5 have no degenerate states except for accid
degeneracy.

GENERAL METHOD

We first recall the numerical method used in Ref.@12#.
This method is based on the correspondence between
wave equation and the diffusion equation. We wish to so
the Helmholtz equation

DC5~1/c2!]2C/]t2 ~2!

using condition~1! on the boundary. Herec is a wave ve-
locity. Instead of Eq.~2! we consider the time-depende
diffusion equation on the same domain:

DDC5]C/]t, ~3!

whereD is a diffusion coefficient. In Eq.~3! C represents a
concentration of diffusing particles which may be positive
negative and condition~1! corresponds to reflecting bound
aries. The general solution of Eq.~3! is a combination of real
exponentials whereas that of Eq.~2! is a combination of
imaginary exponentials. Both Eqs.~2! and ~3! lead to the
same eigenvalue problemDCn52(v n

2/c2)Cn or DCn
5(Dtn)

21Cn , with the correspondence
1413 © 1997 The American Physical Society
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1414 55S. RUSS, B. SAPOVAL, AND O. HAEBERLE´
~Dtn!
215vn

2/c2. ~4!

Here tn is the decay time constant of the diffusional eige
stateCn andvn is the frequency of the corresponding vibr
tional eigenstate.

We compute the time-dependent solution of Eq.~3!, start-
ing with an arbitrary initial functionz0(x,y,t50). The sys-
tem will then converge to a function proportional
C0(x,y)exp~2t/t0!, yielding the first eigenstateC0(x,y)
with eigenvalue 1/t0 @andv0 through Eq.~4!# @12#. Numeri-
cally, this is verified by controlling the diffusion process u
til the function z(x,y,t) decays everywhere exponential
with the same time constant. Then to compute the next s
we start with a new function

z1~x,y,t50!5z0~x,y,t50!

2C0~x,y!E C0~x,y!z0~x,y,t50!dx dy,

~5!

which is orthogonal toC0(x,y). The new distribution con-
verges to the next eigenfunctionC1(x,y). The procedure is
then iterated by orthogonalization of the~n11!th initial dis-
tribution to then previous eigenfunctions. Numerical imple

FIG. 1. Systems under study: Top: The generator for the fra
geometry and the prefractal systems No. 0, No. 1, and No. 2.
area is conserved through the iteration process. The fractal dim
sion of the perimeter isDf5ln 8/ln 453/2. Middle: Systems No. 3
and No. 4 where the fractal generator has only been applied to
neighboring sides of the square initiator. These geometries co
spond to a quarter of the systems No. 1 and No. 2. Bottom:
nonsymmetric system No. 5. It is built with segments of length 0
1, and 1.5. The last three systems have no symmetry degener
-

te,

mentation of the above equations was made using a fi
difference method and is discussed in the Appendix.

With Neumann condition a trivial eigenstate with ze
frequency always exists. It represents a uniform transla
of the system. This is the only state with nonzero integral
shown by integrating the equationDCn52(v n

2/c2)Cn over
the domain and applying the divergence theorem. We fi
using Eq.~1!

E E
V
DCndx dy52~vn

2/c2!E E
V
Cndx dy

5E
G
“Cndl50, ~6!

whereG is the perimeter of the system. Asv n
2/c2 is nonzero

for all eigenvalues, except the first one, all higher eige
modes have zero integral over the domain.

THE LOW-FREQUENCY DENSITY OF STATES

All our resonators have the same area and to discuss
results on a single scale we use as a frequency unit the lo
eigenfrequency of the square initiator. The modes of a squ
with sideL are labeled by the number of half wavelengths
the x,y directionsm,m850,1,2,. . . with eigenvaluesvm,m8

2

5(p2c2/L2)(m21m82). We therefore use in the following a
reduced frequencyV5v/v1,0 wherev1,05pc/L is the fun-
damental frequency of the square for whic
V2~m,m8!5~m21m82!.

For a discretized square of sideL5Za ~Z segments per
side! the exact eigenvalues are@17#

VZ
2~m,m8!5@2~Z11!2/p2#$22cos@pm/~Z11!#

2cos@pm8/~Z11!#%. ~7!

They converge toV2~m,m8!5~m21m82! whenZ goes to in-
finity. We therefore can use Eq.~7! to test the accuracy o
our results as discussed in the Appendix.

We have computed the lowest eigenvalues for the syst
shown in Fig. 1~up to 100 or 200 states!. The 20 lower
eigenvalues for systems No. 0–2 are given in Table I in
Appendix. In our computation we have usedZ564 for sys-
tem No. 0. The systems No. 1–4 were computed w
Z5128. The system No. 5 was computed with the same g
density.

The numerical results for the integrated DOS of syste
No. 0–2 are shown in Fig. 2. The integrated DOSN(X)
denotes the counting function which is the number of eig
values ~including multiplicity! of the equationDC52XC
smaller thanX. For a two-dimensional membrane, Weyl
conjecture@5,6,8# can be written, with our units

N~V2!5~p/4!V21c~V2!, ~8!

with the correction term

C~V2!5~LG/4L !V1~higher-order terms!. ~9!

LG is the length of the resonator perimeter. The relative c
tribution of the correction termC~V2! tends to 0 when
V2→`. Note that Eq.~9! cannot be used for a mathematic
fractal resonator of infinite perimeter. In this caseC~V2! has
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55 1415IRREGULAR AND FRACTAL RESONATORS WITH . . .
been proposed to be proportional toVDf whereDf is the
Minkowski dimension of the perimeter@5,6,18#. We do not
expect to really measure this effect here as our prefra
systems do not exceed the second generation@12#.

Note that Eqs.~8! and~9! have been derived for continu
ous systems that are not exactly equivalent to our discret
systems. Furthermore, they are supposed to be valid in
asymptotic limit corresponding to small wavelengths. B
this limit does not exist in discretized systems which hav
cutoff frequency atvcut5(8k/m)21/2. A partial theoretical
analysis of the spectrum of a discrete system has been
posed by Fisher@19#, but does not lead to an equivalent
Weyl’s formula for discrete lattices.

In Fig. 2 we compare the computed integrated DO
N~V2! of the prefractal systems No. 0–2 with the predictio
of Eqs.~8! and~9!. There are two main effects. First, desp
the discrete character of our systems, the DOS verifies
proximately Weyl’s conjecture. There is a marked increa
of the DOS as we pass from system No. 0 to No. 2 due to
increasing length of the frontier. This result confirms a rec
observation by Hobiki, Yakubo, and Nakayama@18#: the
density of states of the Neumann problem is not solely
scribed by the first term of Eq.~8! as used in@20#.

Secondly there exist steplike increases of the DOS at
cial frequencies. These jumps reveal the accumulation

FIG. 2. Integrated DOSN~V2!: From bottom to top: discretized
square~system No. 0!, prefractal systems No. 1 and No. 2. Th
values calculated from the Weyl approximation@Eqs. ~8! and ~9!#
are indicated by the continuous lines.

FIG. 3. Correction termCNo.~V
2! for systems No. 1, No. 2, and

No. 5 obtained from Eq.~10!. For systems No. 1 and No. 5 th
oscillations indicated by the arrows correspond to values
V25L/~l/2!54, 8, 12, 16.
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quasidegenerated states. To discuss more precisely the ef
of the different geometries, we present in Fig. 3 the correc
tion termCNo. x(V

2) given by

CNo. x~V2!5N~V2!No. x2N~V2!No. 0, ~10!

whereN~V2!No. 0 is the numerical DOS for the square~cal-
culated for the same values ofV2 by a linear interpolation
fit!.

The correction term presents oscillations. For system N
1 these oscillations correspond to values ofV2 that can be
simply identified. Coming back to the definition of
V25v2/v 1,0

2 5(2pc/l)2/(pc/L)25[L/(l/2)]2 we find
that these remarkable values are located atV2542, 82, 122,
162. They correspond to excitations with one, two, three, o
four half wavelengths in the smallest pores of widthL/4.
This behavior apparently recalls that of stable orbits in quan
tum chaos@21#. In this frame there should exist an accumu
lation of states of wavelengths corresponding to simpl
stable orbits of the classical system. In system No. 1, th
observed accumulation of states is apparently due to the e
istence of eight identical pores of widthL/4. This causes the
quasidegeneracy that we observe. For each oscillation, t
f

FIG. 4. Two examples of localized states—~a! staten517; ~b!
staten564. The amplitudes are indicated by different gray levels
The black and white regions stand, respectively, for positive an
negative amplitudes. The gray tones stand for nearly zero amp
tude. In~a8! and~b8! we show how we estimate the half wavelength
l/2 by the path lengthL, leading from positive to negative ampli-
tude regions. Regions likeP1 andP2 may sustain quasidegenerated
eigenmodes.
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FIG. 5. Histograms of the level spacing (DV2)n5(V n11
2 2V n

2) between neighboring eigenvalues.~a! Symmetric prefractal system No
1; ~b! symmetric prefractal system No. 2;~c! quarter prefractal system No. 3;~d! quarter prefractal system No. 4.
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increase ofC~V2!No. 1 is of the order of 10, a number com
parable to the number of identical pores. For comparison
also calculated the correction termC~V2!No. 55N~V2!No. 5
2N~V2!No. 0 for the 120 lower states of system No. 5 whic
has only four pores of widthL/4. Indeed we find fluctuations
at the same frequencies but with about half the amplitud

For system No. 2, the width of the smallest pore isL/16.
We therefore expect an oscillation atV25256, but this value
is beyond our calculated values. We think that the min
oscillations that we observe for this system are reminisc
of the L/4 pore of the first generation disturbed here by
second-order pattern.

Furthermore, there exist two steplike increases of
DOS aroundV2'7 andV2'37. One can understand the
steplike increases by looking at the amplitude distributio
of these eigenmodes: all modes withV2'7 and all modes
with V2'37 look very similar and are localized at th
boundary. We show one example for each frequency in F
4~a! and 4~b!, where the amplitudes are indicated by differe
gray levels. The black and white regions stand, respectiv
for positive and negative amplitudes. The gray tones st
for nearly zero amplitude. For these states, the half wa
length should be of the order of the length of the pathL,
connecting nearest black and white extrema. To illustrate
idea we have drawn in Figs. 4~a8! and 4~b8! paths which
satisfy approximatelyV2'7 andV2'37. In Fig. 4~a8!, L is
about 3L/8 and @L/L#2 is of order 8. The pathL shown in
Fig. 4~b8! corresponds to@L/L#2'35.

The accumulation of states for these special values ofV2

reflects both the symmetry degeneracy and the fact tha
gions near the frontier may have similar shape and size e
if not equivalent under a symmetry operation. For examp
regions P1 and P2 in Figs. 4~a! and 4~b! may sustain
quasidegenerated eigenmodes. This accumulation sh
therefore be a general feature of deterministic fractal str
tures, as discussed in Refs.@18, 22, 23#, but should not exist
in random fractals.
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LEVEL SPACING DISTRIBUTION

Besides an accumulation of eigenstates at certain freq
cies, we find occasionally very large distances betwe
neighboring frequencies. This fact has to be considered
the framework of quantum chaos studies. The level dista
statistics is an important tool to separate chaotic from reg
systems@21#. In Fig. 5 we show the statistics of the lev
spacing (DV2)n[(V n11

2 2V n
2) in the form of histograms

counting the numberN of values~DV2!n in a given interval.
In Figs. 5~a! and 5~b! we show the histograms for th

symmetric systems No. 1 and No. 2. In these cases the va
of ~DV2!n50 due to the degenerated states have b
dropped. The spacing distribution of the symmetric syste
resembles the Poisson distributionN~DV2!}exp@2~DV2!#
generally expected for regular, nonchaotic systems. H
ever, theC4 symmetry of our prefractal systems disturbs t
statistics as our data contain four series of eigenstate
different symmetry which overlap.

For this reason we also computed the eigenstates of
tems No. 3 and No. 4. Their spacing distribution@Figs. 5~c!
and 5~d!# shows a remarkably different behavior. First, t
maximum ofN~DV2! is shifted from zero to higher value
while the probability of finding very small level difference
between neighboring states is considerably diminished. S
ondly, the probability of finding very large level spacings
smaller for the nonsymmetric systems. Consequen
N~DV2! is closer to the Gaussian orthogonal ensemb
which is typical for chaotic systems@21#. Note that eigen-
states with very close frequencies are still present in the n
symmetric systems due to the existence of nearly equiva
regions likeP1 andP2 in Fig. 4. This is not the usual behav
ior of chaotic systems, which should show a ‘‘level repu
sion.’’ For a random irregular system the quasidegenera
associated with the similarity betweenP1 and P2 regions
should disappear and the level repulsion should be more
parent.

Indeed our prefractal systems are pseudointegrable in
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55 1417IRREGULAR AND FRACTAL RESONATORS WITH . . .
sense of Richens and Berry@24,25#. The term ‘‘pseudointe-
grable’’ describes billiard problems in two-dimension
polygon enclosures whose angles are rational multiples op
and which have the additional property of ‘‘beam splitting
This means that neighboring trajectories can split at sal
corners as illustrated in Fig. 6. It was shown that for tw
dimensional~2D! pseudointegrable systems, the trajector
in phase space are restricted to two-dimensional surfaces
for integrable systems—but these surfaces do not have
shape of tori@24#. The behavior of pseudointegrable syste
can be considered as intermediate between regular and
otic. There is an apparent correspondence between the
ing distribution we found and the pseudointegrable chara
of our systems. By going from one prefractal generation
the next, the chaotic behavior should increase, as more
more salient corners appear.

WAVE FORMS AND LOCALIZATION

In this section we discuss the confinement of the vib
tions. To characterize mathematically the localization or
confinement of each state we compute, following Thoul
@26#, the ‘‘existence volume’’Vn of a given stateCn by a
sum on the lattice sitesi ,

FIG. 6. Illustration of the beam splitting at a salient corner in
prefractal billiard. Depending on whether a particle arrives on
left- or on the right-hand side of the corner, it is reflected in t
different directions.

FIG. 7. Relative existence volumeVn/V0 for the first 200 states
of systems No. 1 and No. 2 computed from Eqs.~11! and~12!. The
value 4/9 for the square~No. 0! is indicated by the dashed line.
nt
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Vn5S (
i
a2uCn,i u4D 21

, ~11!

wherea is the lattice constant andCn is normalized by

(
i
a2uCn,i u251. ~12!

The volumeV0 of a normalized constant function~like the
trivial mode! is equal to the product ofa2 by the total num-
ber of particles. For a square withZ segments per side
Cn,i5a21(Z11)21 and V05a2(Z11)25L2. If we find
thatVn is significantly smaller thanV0 we say that the cor-
responding state of indexn is ‘‘localized.’’ Figure 7 gives
the values of the relative occupation volumeVn/V0 of the
first 200 lower states for the symmetric systems No. 1 a
No. 2. Figure 8 gives the values for system No. 1 and for
nonsymmetric system No. 5. In both cases the results s
that, apart from the very first states, the existence volum
only a fraction of the total surface of the resonator. In o
systems the tendency to localization is increased by the
regularity of the frontier. Increasing the fractality has qua
tatively the same effect on localization as lowering the sy
metry. This important result confirms that determinis
fractality has the same qualitative effect as disorder.

For the symmetric system No. 1 the average^Vn/V0& is
found to be equal to 0.35. The corresponding value for
delocalized cosine functions of the square isVn/V0
54/950.44 as indicated by a dashed line in Figs. 7 and

The highest degree of localization is found for system N
2, for which the smallest valueVn/V0 is equal to 0.031 for
degenerated statesn562, 63. The average value of^Vn/V0&
over the 200 lower states is equal to 0.24. For the nons
metric system No. 5, the smallest value ofVn/V0 is 0.088 for
state indexn562 and the averagêVn/V0&50.28.

We now discuss the spatial location of the mod
Whereas Dirichlet fractinos decay very rapidly towards t
boundary @12# Neumann fractinos have the opposite te
dency: as the boundary is free to vibrate, eigenmodes
have a maximum amplitude at this location. The existence
these states can be understood from the observation of re
P1 of Figs. 4~a! and 4~b!. For such states, the diffusion from
regions with positive concentration towards regions of ne

e

FIG. 8. Relative existence volumeVn/V0 for the first 100 states
of systems No. 1 and No. 5. The value 4/9 for square~No. 0! is
indicated by the dashed line.
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1418 55S. RUSS, B. SAPOVAL, AND O. HAEBERLE´
tive concentration occurs between neighboring pores. Th
a small particle concentration in the interior of the system
compatible with a large concentration near the bounda
Most of the localized states are located in this manner n
the frontier. In the vibrational picture, one can think th
waves being excited in the small pores are submitted to m
tiple diffraction which may cause partially destructive inte
ferences in the central region of the system. This is a w
localization effect which does not occur for all states. No
that if no rotation degeneracy existed, the localization v
ume for these states would be typically four times sma
than the values found in system No. 2.

When the fractal character of the frontier increases
find more and more surface modes. This is an import
property of the Neumann fractinos. Qualitatively, the mo
irregular and winding the boundary, the more localized ma
of the Neumann fractinos. We expect a similar behavior
3D irregular systems. As these modes represent transv
acoustical phonons, the increased localization may show
as a decrease of the heat conduction of irregular crystal
at low or average temperature~T,50 K!. Due to localization
near irregular boundaries, Neumann fractinos should
propagate as ordinary phonons and the heat conductivity
small crystallite should depend on its geometrical irregu
ity.

DISCUSSION OF SMALL IRREGULAR CRYSTALLITE
VIBRATIONS

The modification of the DOS due to the resonator sha
also observed for Dirichlet fractinos@12#, could help in un-

FIG. 9. Top: Scheme of a dense material with irregular or frac
interfaces. Bottom: Partial scheme of the atomic structure of a c
tallite with geometry No. 2 with three atoms on the smaller cut-o
For a Dirichlet crystallite the perimeter atoms, here represente
bold 3, are kept fixed. For a Neumann crystallite the perime
atoms are free to move.
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derstanding the vibrational properties of strongly inhomo
neous solids like demixed glasses@27#. In such binary solids,
there exist separatedA andB regions, principally made up o
A atoms orB atoms. Although the mass distribution is no
fractal, the internal interfaces between theA andB regions
may be irregular and even possibly fractal@28,29#. The dis-
cussion that we present below has been suggested by
observed anomalous vibrations in the amorphous superi
glass~AgI!x~Ag2O,B2O3!12x @30,31#. This glass is a collec-
tion of irregular domains principally composed of AgI an
Ag2O,B2O3 and could present irregular interfaces betwe
domains. The extremely high ionic conductivity shows th
the Ag1 ions~at least in the AgI regions! are weakly coupled
to the cage. One has then a strong contrast between the
pling constants of the different atoms.

A schematic picture of such a hypothetical 2D solid
shown in Fig. 9, top. As represented, the figure show
crystalline arrangement but we keep in mind a disorde
structure. We have computed the vibrations of a 2D struct
in which Dirichlet and Neumann fractinos can both exi
This is the case if the local vibrational properties ofA andB

l
s-
.
y
r

FIG. 10. Neumann and Dirichlet integrated DOS~with thesame
spring constant! for the small crystallite partially depicted by Fig. 9
bottom. The horizontal coordinate is given in computer units
discussed in the Appendix. The dashed line represents Weyl’s l
ing term.

FIG. 11. Differential density of states of a collection of Dirichl
crystallites~with soft springs! and Neumann crystallites~with stiff
springs!. The dashed line indicates the usual Debye slope ind52.
Note the break aroundv53. The horizontal coordinate is given i
computer units as discussed in the Appendix.
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55 1419IRREGULAR AND FRACTAL RESONATORS WITH . . .
TABLE I. The lowest eigenvalues of several vibrating systems under Neumann boundary conditio~in
reduced units!. The first column~a! gives the index~or integrated DOS! of the state. Column~b! gives the
exact eigenvalues for the continuous square. Column~c! gives the exact result from Eq.~6! for the discretized
square withZ564. Columns~d!, ~e!, and~f! give, respectively, the numerical eigenvalues for system No
with Z564 and systems No. 1 and No. 2 withZ5128. Tables giving the ensemble of our results are availa
upon request.

~a!
Index

~b!
~m21m82!

~c!
Eq. ~9!

~d!
No. 0

~e!
No. 1

~f!
No. 2

1 1.0 0.999 805 348 0.998 053 50 0.395 335 034 0.309 143 0
2 1.0 0.999 805 348 0.998 053 50 0.395 335 034 0.309 143 0
3 2.0 1.999 610 70 1.999 610 70 0.485 888 934 0.363 068 7
4 4.0 3.996 886 30 3.996 886 31 2.061 221 08 1.501 785 3
5 4.0 3.996 886 30 3.996 886 31 2.454 292 45 1.727 122 8
6 5.0 4.996 691 65 4.996 691 65 2.454 292 45 1.727 122 8
7 5.0 4.996 691 65 4.996 691 65 2.471 316 62 1.736 189 8
8 8.0 7.993 772 60 7.993 772 59 2.699 429 97 1.928 338 5
9 9.0 8.984 243 04 8.984 243 04 5.389 272 47 3.979 217 8
10 9.0 8.984 243 04 8.984 243 04 5.389 272 47 3.979 217 8
11 10.0 9.984 048 39 9.984 048 37 7.080 594 34 4.493 104 9
12 10.0 9.984 048 39 9.984 048 37 9.086 646 92 5.150 893 9
13 13.0 12.981 129 3 12.981 129 4 10.710 063 5 6.394 524 8
14 13.0 12.981 129 3 12.981 129 4 10.710 063 5 6.394 524 8
15 16.0 15.950 227 4 15.950 227 3 12.629 351 8 6.827 878 3
16 16.0 15.950 227 4 15.950 227 3 15.713 986 0 6.829 816 1
17 17.0 16.950 032 7 16.950 032 7 15.913 258 0 6.829 816 1
18 17.0 16.950 032 7 16.950 032 7 15.913 258 0 6.833 741 6
19 18.0 17.968 486 1 17.968 486 1 15.694 466 1 6.839 132 7
20 20.0 19.947 113 7 19.947 113 7 16.159 403 6 6.839 132 7
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are strongly contrasted, for example, if theA-A and A-B
springs are very soft and theB-B springs very stiff.

First, we compute the Dirichlet and Neumann fractin
DOS ~with thesamespring constantk! for a single 2D crys-
tallite with geometry No. 2 and having only three atoms
the smallest segment. A part of this structure is depicted
Fig. 9, bottom. Note that we are computing here a natur
discretized atomic structure. The results are shown in Fig
together with the Weyl leading term which represents
classical Debye behavior and neglects both crystalline
persion and irregularity. One observes that the Neum
DOS is always larger than the Debye DOS while the Diric
let DOS is smaller at low frequency. These data cannot
simply extended to the case of a real 3D material becaus
the existence of various modes and polarization of vibrati
in solids.

Instead, from the data of Fig. 10 we compute the diff
ential DOS of a collection of one Dirichlet 2D crystallit
with spring constantk ~supposedly representing the Ag1 ions
in AgI! and ten Neumann 2D crystallites with spring co
stant 9k ~supposedly representing the rest of the glass!. The
result is shown in Fig. 11. One observes a break in the D
curve. At low frequency the average slope is slightly sma
than the Debye slope~equal to 1 ind52! while abovev'3
the DOS presents a more rapid dependence. This beha
although 2D, is similar to the behavior of the DOS
~AgI!x~Ag2O,B2O3!12x determined by inelastic neutron sca
tering @30,31#. This material presents an anomalous DO
below 1 meV it exhibits an under-Debye behavior~va with
s

in
ly
0
e
s-
n
-
e
of
s

-

S
r

ior,

:

a,2!. For higher frequencies~above 1 meV! the observeda
is larger than 2 and the DOS increases faster than in
ordinary Debye 3D case. At still higher frequencies the DO
is compatible with the fracton density of states.

Another possible consequence of the existence of Diri
let and Neumann fractinos could be to lower the heat c
duction. Because Dirichlet fractinos have a tendency to
localized in the internal region of the resonator@12# and Neu-
mann fractinos are localized near the boundary, their c
pling should be small. Hence one predicts that the existe
of such internal irregularity should contribute to lower th
heat conduction.

CONCLUSIONS AND OUTLOOK

We have studied vibrational modes of 2D irregular stru
tures obeying the Neumann boundary condition. There
two main effects due to the boundary irregularity.

First there exists an increase in the density of states
agreement with Weyl’s conjecture but presenting strong
cillations in deterministic prefractal geometries. Second a
more surprising, we have found many modes which are c
fined near the fractal boundary. This localization effect
creases from one fractal generation to the next, even for
terministic prefractals. This shows that fractality has t
same qualitative effect as disorder.

This localization should exist in irregular acoustical ca
ties where the acoustic pressure obeys the Neumann co
tion on rigid boundaries. A straightforward example is
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acoustic waveguide with prefractal cross section for wh
many of the so-called higher modes would be localized
different regions.

Using our simple 2D results, we have discussed the p
sible influence of the interface irregularities on the vib
tional properties of demixed binary solids. To the extent t
our conclusions still hold ind53, this gives a first hint to
understand the anomalous vibrational properties of su
ionic glasses like~AgI!x~Ag2O,B2O3!12x.

The localization effects should also play a role in the h
conductivity of small irregular crystallites and contribute
lowering the heat conduction of binary glasses. The sa
localization effects could play a role in the electron-phon
coupling in irregular crystallites.
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TABLE II. Comparison of the eigenvalues computed using p
determined precision and predetermined number of steps. The
culations are performed on the prefractal system No. 2 withZ564.
In the first column the iteration process has been continued un
predetermined precisionD50.531026 has been reached. In the se
ond column the iteration process is automatically stopped a
5 020 000 iterations. The subcolumns indicate the number of it
tions and the respective eigenvalue. It can be seen that the
states with restricted number of iterations show comparatively la
errors but that this does not modify higher eigenvalues.

State

~a! ~b!

Iterations V2 Iterations V2

60 780 000 34.069 901 6 780 000 34.069 901
61 65 760 000 34.816 274 5 5 020 000 34.817 434
62 151 760 000 34.817 987 3 5 020 000 34.817 857
63 151 760 000 34.817 987 3 5 020 000 34.817 951
64 28 820 000 34.818 083 7 5 020 000 34.818 319
65 480 000 34.818 719 9 5 020 000 34.818 452
66 260 000 34.819 177 1 5 020 000 34.818 715
67 260 000 34.819 177 1 5 020 000 34.818 723
68 320 000 34.823 693 0 340 000 34.823 646
69 260 000 35.918 228 3 380 000 35.918 228
70 220 000 36.819 475 0 1 840 000 36.819 475
71 340 000 37.411 440 0 340 000 37.411 440

.
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.

.

.

.

.

.

.

.

.

.

.

.

.
78 100 000 42.465 272 0 100 000 42.465 272
79 100 000 43.286 617 3 100 000 43.286 617

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
105 1 150 000 79.034 979 3 1 310 000 79.034 979
106 220 000 79.339 022 4 220 000 79.339 022
107 220 000 79.339 022 4 220 000 79.339 022
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APPENDIX: COMMENTS
ON THE NUMERICAL METHOD

We compute the time evolution of the numerical soluti
of Eq. ~3! on a discretized grid until we obtain everywhere
single exponential decay. Our precision criterion is the co
parison of the time evolution of the concentrationCi on the
different grid sitesi , which we compute until it is the sam
everywhere within a predetermined relative errorD, gener-
ally chosen asD50.531026 @12#.

The computer time step~the relative increase in time be
tween two consecutive readjustments of the values ofC at
the lattice sites! was chosen equal tots/10 wherets is the
inverse of the jump probability per unit timeW. The diffu-
sion coefficient ind52 is given byD5a2/4ts and for a
given stateCn the computer time constanttn is given in
units of ts . From the relation~4! the corresponding eigen
value isv n

254(ts/tn)(c/a)
2 or v n

254/tn in computer units
~c51; a51; ts51!. Note that bothv n

2 andtn depend on the
numberZ5L/a of segments on the side of the initial squar
The value of the fundamental time constantt1,05L2/p2D is
given by ~2Z/p!2 in computer units.

Discretization in space introduces a difference with co
tinuous systems. For the square, exact solutions exist
both the continuous and the discretized cases and this di
ence is known exactly.

Numerical errors are due to convergence limitations. F
the square, these errors can be monitored by comparing
merical values with the exact values from Eq.~7!. Table I
gives the 20 lower eigenvalues for the different system
Column ~b! shows the values for the continuous square s
tem, column~c! the exact solutions@Eq. ~7!# for the dis-
cretized square withZ564, and column~d! shows the nu-
merical values for the same discretized square. The firs
values for systems No. 1 and No. 2 are given in columns~e!
and~f!. The difference between~b! and~c! is due to discreti-
zation. The comparison between exact and numer
values—columns~c! and~d!—gives a measure of our prec
sion. The largest relative deviation is of order 1029. Even for
higher eigenvalues the precision is very good in the cas
the square. For example, for state number 206~m5m8511!,
the exact value from Eq.~6! is V2~11,11!5236.353 204 932
and its numerical approximation is 236.353 204 964. T
relative error of order 10210 indicates the reliability of our
method.

For our systems, we observed that quasidegeneracy
duces a considerable increase in the computation time
there exist two statesCa andCb , with close time constants
ta and tb and if we start with (Ca1Cb) at time t50, the
function will be at timet equal to

Caexp~2t/ta!1Cbexp~2t/tb!

5~exp@2t/ta# !$Ca1Cbexp@2t~ta2tb!/tatb#%.

Therefore many iterations are needed befo
exp[2t(ta2tb)/tatb] is small enough to reach a single e
ponential decay. Table II gives the number of steps neede
reach the required precision for system No. 2 withZ564.
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States 61–68 are degenerate or quasidegenerate and re
100–1000 times more steps than normal states.~True degen-
eracy due to the system symmetry is not a difficulty if o
starts with appropriate symmetrized functions@12#.!

To shorten the computation time we have restricted
procedure to a predetermined limited number of steps ins
of predetermined precision. Doing that, we accept a low
precision for the quasidegenerated states, hoping that
will not modify higher states and eigenvalues as we disc
below. The results are shown in Table II~b!, where the num-
ber of steps was limited to 5 020 000. Comparison of c
umns~a! and ~b! shows that, beyond state 69, there is ve
little perturbation. We controlled this for about 200 stat
with a precision of nine digits. These results indicate
robust character of our numerical procedure. We foun
number of these quasidegenerated states for systems N
and No. 5. Using a predetermined limited number of st
equal to 5 020 000 we computed 214 eigenstates wi
about 10 h on a Cray C98 vector processor.

In our method, the numerical eigenvalues are aresult of
the computation but do not enter into the numerical proc
itself. To computeCn11 andV n11

2 we do not need then
previous eigenvalues or then previous eigenfunctions bu
only an orthogonal basis in the subspace generated by
true eigenfunctions. If we stop the computation before c
vergence we obtain an orthogonal basis of functio
uXn&5ucn,1C11cn,2C21•••1cn,n21Cn21& which are not
.
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eigenstates but linear-independent combinations of th
eigenstates. To compute thenth eigenstateuCn& we start with
an arbitrary functionuzn& that we orthogonalize to all lowe
statesuXn&. If uzn& is orthogonal to alluXn&, we have

c1,1̂ znuC1&1c1,2̂ znuC2&1•••

1c1,n21^znuCn21&50,

•••••••••••••••••

cn21,1̂ znuC1&1cn21,2̂ znuC2&1•••

1cn21,n21^znuCn21&50.

This set of linear equations with unknowns^znuCn& has a
nonzero determinant because of the linear independenc
the vectorsuXn&. Hence the only solution iŝznuCn&50 for all
n. Note that orthogonalizingzn(x,y,t50) to the normalized
constant stateC0 is equivalent to subtracting its space ave
age ^C0& from zn(x,y,t50). For this reason we chose th
first initial distributionz0(x,y,t50) not as a constant.

In conclusion,as long as we are working in the sam
subspace, the use of an eigenstate basis is not necess
Restricting the computation time induces errors for the
genvalues in this subspace, but does not induce errors
higher eigenvalues.
-
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