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Integral method to study transition radiation from surfaces with arbitrary profile
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Transition radiation is produced when an electron moving at constant speed crosses the boundary separating
two media with different optical properties. We propose an alternative description of this phenomenon, based
on an integral representation of the electromagnetic field and show that the approach gives known results for
a flat surface. Compared to previously published methods, based either on the reciprocity theorem in electro-
magnetism or on a four-dimensional Fourier representation of the field generated by the moving electron, this
method has the advantage that it can be applied to general boundary geometries.

PACS number~s!: 41.60.2m, 42.25.Gy, 42.25.Fx
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Transition radiation is produced when a charged part
crosses the interface separating media with different opt
properties@1#. Two different approaches have been propos
so far for flat surfaces. One consists in writing the incide
field as a superposition of virtual photons which are scatte
at the interface, giving birth to propagative waves whi
constitute the transition radiation spectrum@2,3#. The total
field must then satisfy the boundary conditions at the in
face. While of general validity, this method gives easy-
solve boundary problems for flat surfaces only. Another
proach consists in making use of the reciprocity theorem
electromagnetism: one solves a reciprocal problem in wh
real waves interact with the surface and the electron@4,5#.
Because real waves only are taken into account, for a
surface the introduction of the Fresnel coefficients
straightforward. Very few works have been dedicated to
study of transition radiation from rough surfaces@6#. For a
periodic profile, van den Berg@7# made use of an integra
method to describe the radiation emitted when an elec
passes close~but without hitting it! and parallel to a surface
grating, known as the Smith-Purcell radiation. In this pap
we give an approach to the transition radiation, based on
integral representation of the electromagnetic field simila
the one proposed by van den Berg. Figure 1 describes
configuration we consider, with an electron crossing the
terface separating vacuum from a perfectly conducting m
dium and the so-called in plane radiation only. The originO
of the ~x,y,z! reference frame attached to the surface co
sponds to the impact point. The direction of incidence
determined by the angleF between the electron trajector
and thex axis. The photon escape direction is defined by
angleu with respect to thez axis. The (X,Y5y,Z) reference
frame attached to the electron trajectory will be used
mathematical proofs~Fig. 2!.

As in Ref. @7#, the electron is modeled as a charged m
terial point with a chargeq and travels with constant velocit
v0 . Such a motion generates an electric current densiJ
given by

J~X,Y5y,Z,t !5qv0d~X2v0t,Z!uX , ~1!
PRE 611063-651X/2000/61~4!/4441~4!/$15.00
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which in turn is responsible for the total electromagne
field ~E,H! described by the following Maxwell equations~in
S.I. units!:

¹3E52
]B

]t
, ~2!

¹3H5J1
]D

]t
, ~3!

with B5m0H andD5e0E. One introduces the Fourier inte
gral @7#:

U~x,y,z,t !5~2p2!21 ReF E
0

1`

dvE
2`

1`

U~x,z;b,v!

3exp~ iby2 ivt !dbG ~4!

for E(x,y,z,t), H(x,y,z,t), J(x,y,z,t) and shows that the
~x,z! components of the Fourier variablesE,H of the electro-
magnetic field can be expressed in terms of its soley com-
ponent which satisfies the Helmholtz equations:

]x
2Ey1]z

2Ey1~k0
22b2!Ey5~m0 /e0!1/2~b/k0!]xJx , ~5!

FIG. 1. Scheme of the emission of transition radiation as
electron hits a perfectly conducting surface. The trajectory of
particle lies in the~x,z! plane and the incidence direction is dete
mined by angleF. The direction of observation is defined by ang
u. The origin of the reference frame is at the impact point.
4441 © 2000 The American Physical Society
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]x
2Hy1]z

2Hy1~k0
22b2!Hy52]zJx ~6!

with k05v/c, c being the velocity of light in vacuum.
In Ref. @7#, the above equations are used to calculate

so-called incident field (E( i ),H( i )) generated by the particl
in motion and the solution of the radiation problem is trea
as a grating problem@8# with an evanescent wave (E( i ),H( i ))
as the excitation field, the particle being neglected. In
present case, since the electron hits the surface, an int
tion between the charge in motion and the interface sho
take place. As a result, the expression of the field (E( i ),H( i ))
as given in Ref.@7# and which has been calculated for
charge in the free space, is no longer valid. However,
shall show now that the actual transition radiation probl
can be reduced to a boundary value problem similar to
Smith-Purcell problem@7# but with a different excitation
field.

In the plane (x,y50,z) of incidence, since the wave vec
tor has no component on they axis so thatb is equal to zero
@7#, the set of Eqs.~5!, ~6! reduces to

]x
2Ey1]z

2Ey1k0
2Ey50, ~7!

]x
2Hy1]z

2Hy1k0
2Hy52]zJx . ~8!

Here, the y component of the electric excitation fiel
Ey

( i )(x,z;0,v) vanishes and the magnetic excitation fie
H( i )(x,z;0,v) has a sole component on they axis: the waves
are TM polarized@7#. Hence, in such a plane, if we se
u(x,z)5Hy(x,z;0,v), we have to find a fieldu that satisfies
the ~inhomogeneous! Helmholtz equation:

Du1k0
2u52]zJx , ~9!

a radiation condition asz→1` and the Neumann boundar
condition:

du

dn
„x, f ~x!…50. ~10!

Herez5 f (x) represents the surface profile. Such a pro
lem is well known in electromagnetism@9# and becomes a
boundary value problem if one introduces the Green func
G:

DG1k0
2G524pd~x2x8,z2z8!, ~11!

FIG. 2. Coordinate transformation (ux ,uz)→(uX ,uZ) used to
derive an integral representation of the excitation fieldu( i ). In order
to take into account the sign ofz1X8 sinF, the integral alongX8 is
split into an integral from2` to 2z/sinF and an integral from
2z/sinF to 0.
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which is nothing else than the field created by an elemen
point source located at (x8,z8). Multiplying Eq. ~9! by
G(x2x8,z2z8), Eq. ~11! by u(x8,z8), and substracting the
resulting equations lead to

E E
S
dx8dz8@GDu2uDG#1E E

S
dx8dz8G]zJx

54pu~x,z! if z. f ~x! ~12!

50 if z, f ~x!, ~13!

whereS is a closed surface bounded by the contourG5G1
1G2 ~Fig. 3!. Applying the second Green identity@10# to
Eqs.~12!, ~13! and taking into account thatG must satisfy a
radiation condition, one gets

u~ i !1
1

4p E
G1

dl8FG
]u

]n
2u

]G

]n G5u~x,z! if z. f ~x! ~14!

50 if z, f ~x! ~15!

with

]

]n
5n¹8, ~16!

u~ i !~x,z!5
1

4p E E
S
dx8dz8G~x2x8,z2z8!]zJx .

~17!

From a physical point of view, Eqs.~14!, ~15! express the
fact that, under the stressu( i ), the charges on the boundar
G1 act in such a way as to extinguish the field inz, f (x):
this is usually referred to as the extinction theorem@11#.
From Eq. ~17!, we shall seek an integral representation
u( i ). Noticing from Fig. 2 that (ux ,uz) can be deduced from
(uX ,uZ) by a F rotation, one has

]zJx~X,Z!5q exp~ ia0X!d8~Z!, ~18!

with a05k0c/v0 . As a consequence, Eq.~17! becomes

u~ i !~x,z!5
q

4p E E
S
dX8dZ8 exp~ ia0X8!d8~Z8!

3G~x2X8 cosF2Z8sinF,z

1X8 sinF2Z8 cosF! ~19!

FIG. 3. Contour of integration for the Green theorem. AsR→
1`, the integral onG2 vanishes because of the outgoing conditi
on G.
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5
q

4p E
2`

0

dX8 exp~ ia0X8!E
Z0

1`

dZ8d8~Z8!

3G~x2X8 cosF2Z8 sinF,z1X8 sinF2Z8 cosF!,

~20!

Z0 being given in Fig. 2. Since according to the theory
distributions@12# ^d8,w&52^d,w8&, one gets

u~ i !~x,z!52
q

4p E
2`

0

dX8 exp~ ia0X8!
d

dZ8
U

Z850

3G~x2X8 cosF2Z8 sinF,z

1X8 sinF2Z8 cosF!. ~21!

Now, one considers the plane wave~Weyl! expansion@13# of
G:

G~x,z!5 i E
2`

1` da

g
exp~ iax1 iguzu! ~22!

with a21g25k0
2, so that

u~ i !~x,z!52
q

4p E
2`

1`

da exp~ iax!

3E
2`

0

dX8Fag sinF1sign~z1X8 sinF!cosFG
3exp@ i ~a02a cosF!X81 iguz1X8 sinFu#.

~23!

In order to take the sign ofz1X8sinF into account, one
splits the integral alongX8 and gets finally

u~ i !~x,z!52
q

4p H exp~2 ia0 /sinFz!E
2`

1` da

g

3exp@ ia~x1z cotF!#

3F a sinF2g cosF

i ~a02a cosF2g sinF!

2
a sinF1gcosF

i ~a02a cosF1g sinF!G1E
2`

1` da

g

3exp~ iax1 igz!

3F a sinF1g cosF

i ~a02a cosF1g sinF!G J for z.0. ~24!

To obtain Eq.~24! one uses the fact thatv0 /c is strictly
smaller than 1 and the Fourier transform of the Heavis
step function

E
0

1`

dt exp~2 ivt !5PS 1

iv D1pd~v! ~25!

with P denoting the Cauchy principal value.
f

e

Finally, Eqs. ~10!, ~14!, and ~15! lead to the following
integral equation:

u~ i !~x,z!2
1

4p E
G1

dl8u„x8, f ~x8!…
]G

]n
5u~x,z! if z. f ~x!

~26!

50 if z, f ~x!,
~27!

whereu( i ) is given by Eq.~24!. This integral equation is to
be solved to obtain the total fieldu(x,z), from which the
radiative part constitutes the transition radiation spectrum

We shall make a few comments about Eq.~24!. First, the
excitation fieldu( i ) has been written as a superposition of
couple of integrals. The first integral presents a singula
on z52x tanF which indeed is the trajectory of the elec
tron. Since its integrand does not satisfy the Helmholtz eq
tion, such an integral represents a nonradiative compon
u( i ). In the second integral, one recognizes a plane w
expansion: it corresponds to the progressive waves gene
by a charge in motion which is suddenly stopped when
arrives onto the surface@14#. Second, a usual Neuman
boundary condition is considered but in the present case
particle actually hits the surface and creates a singularity
the impact pointO. However, the extinction theorem tells u
that Eq.~15! is also valid forz, f (x). If one introduces a
singular component in the integral and sets it equal to
opposite of the singularity ofu( i ), both of the singularities
would cancel each other on the profilez5 f (x) and a regular
boundary condition can actually be considered. When
surface is flat and perfectly conducting, a classical appro
consists in involving the image charge: the singular com
nent is then the image of the particle in motion. For a non
surface, such a classical approach cannot be used any
and the singular component in that case should be called
generalized image of the particle in motion.

In order to prove the validity of the above investigation
we now calculate the power emitted when an electron hi
perfect plane@ f (x)50#. The limit equation for Eq.~26! asz
is closed tof (x) is @9#:

1

2
u„x, f ~x!…5u~ i !

„x, f ~x!…2
1

4p E
G1

dl8u„x8, f ~x8!…
]G

]n
.

~28!

On the surface, Eq.~28! reduces tou(x,0)52u( i )(x,0) so
that the solution of the radiation problem for a perfect pla
is

u~x,z!5u~ i !~x,z!2
1

2p E
2`

1`

dx8u~ i !~x8,0!
]G

]n
~x2x8,z!.

~29!

Recalling Eq.~22!, one gets
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]G

]n
~x2x8,z!52E

2`

1`

da exp@ ia~x2x8!1 igz# for z.0

~30!

and finally

u~x,z!5u~nr !~x,z!2
q

4p E
2`

1` da

g
exp~ iax1 igz!

3F a sinF2g cosF

i ~a02a cosF2g sinF!

1
a sinF1g cosF

i ~a02a cosF1g sinF!G for z.0, ~31!

where u(nr) corresponds to the nonradiative component
u( i ) given by the first integral in Eq.~24!. It is worth noting
from Eq.~31! that the radiative component ofu(x,z) written
as a plane wave expansion is the result of an interfere
between the radiative component@the second integral of Eq
~24!# of u( i ) and the field emitted by the surface under t
stress of the incoming component of the same fieldu( i ).
From an opticist’s point of view, this is a very unusual sc
tering situation. However, this result clearly recalls the cl
sical description of transition radiation in which the radiati
field is written as a superposition of a direct field and a fi
reflected by the perfectly conducting surface@4,5,14#.

Now, the saddle point method@15# is used to express th
integral in Eq.~31! in the far field so that the scattered pow
is proportional to
s

ic

z,
f

ce

-
-

uu~sc!~r ,u!u2

5U q

A2pk0r

b0 sinF~sinu2b0 cosF!

~12b0 cosF sinu!22b0
2 cos2 u sin2 FU2

~32!

with b05v0 /c. The angular factor in Eq.~32! is the same as
the expression obtained in Refs@2–5,14# for a perfectly con-
ducting surface and confirms the validity of the approa
presented in this paper.

Transition radiation has been investigated from a theo
ical point of view. From Maxwell equations, we have redu
the problem to a boundary value problem. The resulting
tegral equation can be solved by means of known~numeri-
cal! tools. Peculiar aspects of such a radiation problem
the excitation field generated by the motion of the parti
and, since the particle hits the surface, a singularity on
profile z5 f (x). This difficulty can be overcome, as the su
face is perfectly conducting, by stating that the particle ha
generalized image through the interface. Both particles c
cel as they meet at the impact pointO and a regular bound
ary condition can be used. Applying the formalism in t
case of a plane interface gives known expression of the s
tered power, confirming at least in such a simple case,
validity of the investigations presented here.

Finally, it must be emphasized that Eq.~28! is valid what-
ever the profilez5 f (x), provided that the second derivativ
f 9(x) exists @8#. Our formalism can therefore be applie
when a surface with an arbitrary profile is considered,
example a grating@16#.

The authors gratefully acknowledge J. Harthong,
Rullhusen, N. Maene, and P. Henri for valuable discussi
which led to this work.
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