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Integral method to study transition radiation from surfaces with arbitrary profile
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Transition radiation is produced when an electron moving at constant speed crosses the boundary separating
two media with different optical properties. We propose an alternative description of this phenomenon, based
on an integral representation of the electromagnetic field and show that the approach gives known results for
a flat surface. Compared to previously published methods, based either on the reciprocity theorem in electro-
magnetism or on a four-dimensional Fourier representation of the field generated by the moving electron, this
method has the advantage that it can be applied to general boundary geometries.

PACS numbeps): 41.60—m, 42.25.Gy, 42.25.Fx

Transition radiation is produced when a charged particlevhich in turn is responsible for the total electromagnetic
crosses the interface separating media with different opticdield (E,H) described by the following Maxwell equatiofis
propertied 1]. Two different approaches have been proposeds.l. units:
so far for flat surfaces. One consists in writing the incident
field as a superposition of virtual photons which are scattered VXE=— E @)
at the interface, giving birth to propagative waves which at’
constitute the transition radiation spectryéh3]. The total
field must then satisfy the boundary conditions at the inter- 9D
face. While of general validity, this method gives easy-to- VXH=J+ —, 3
solve boundary problems for flat surfaces only. Another ap- o

roach consists in making use of the reciprocity theorem in . . .
glectromagnetism: one sc?lves a reciprocallaprobxllem in whicl{/!th B=xoH andD = &E. One introduces the Fourier inte-
real waves interact with the surface and the elec{dB]. gral[7]:

Because real waves only are taken into account, for a flat . .

surface the introduction of the Fresnel coefficients is  y(xy,zt)=(272) 1 Re“ de Ux,z: B, w)
straightforward. Very few works have been dedicated to the 0 —

study of transition radiation from rough surfadés. For a

periodic profile, van den Berfi7] made use of an integral Xexqiﬂy—iwt)dﬁ} (4)
method to describe the radiation emitted when an electron

passes closéut without hitting i) and parallel to a surface

grating, known as the Smith-Purcell radiation. In this paperfor E(x,y,z,t), H(x,y,z,t), J(X,y,zt) and shows that the
we give an approach to the transition radiation, based on afx,z) components of the Fourier variabl€s+ of the electro-
integral representation of the electromagnetic field similar tanagnetic field can be expressed in terms of its sot®m-
the one proposed by van den Berg. Figure 1 describes thgonent which satisfies the Helmholtz equations:
configuration we consider, with an electron crossing the in-

terface separating vacuum from a perfectly conducting me- 428, + 62, + (k3— B2 &= (1o / €0) 4 Blko) dxTx, (5)
dium and the so-called in plane radiation only. The ori@in

of the (x,y,2) reference frame attached to the surface corre- z
sponds to the impact point. The direction of incidence is

determined by the angl® between the electron trajectory

and thex axis. The photon escape direction is defined by the o
angle# with respect to the axis. The ¥,Y=y,Z) reference v
frame attached to the electron trajectory will be used for @
mathematical proofg§Fig. 2).

As in Ref.[7], the electron is modeled as a charged ma- 0
terial point with a charge and travels with constant velocity Surface
vo. Such a motion generates an electric current denbity [, 1. Scheme of the emission of transition radiation as an
given by electron hits a perfectly conducting surface. The trajectory of the

particle lies in the(x,2) plane and the incidence direction is deter-
mined by angleb. The direction of observation is defined by angle
J(X,Y=Y,Z,t)=quod(X—vot,Z)uy, (1) 6. The origin of the reference frame is at the impact point.

Direction of
observation

z=f(x) X
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FIG. 3. Contour of integration for the Green theorem. Rs»
+o0, the integral orl", vanishes because of the outgoing condition
on G.

FIG. 2. Coordinate transformatioruy,u,)— (ux,uz) used to
derive an integral representation of the excitation figidl In order
to take into account the sign aft- X’ sin®, the integral along’ is

split into an integral from—< to —z/sin® and an integral from \ hio is nothing else than the field created by an elementary

~Zsin® o0 0. point source located atx(,z'). Multiplying Eq. (9) by
G(x—x",z—2"), Eq.(12) by u(x’,z"), and substracting the
‘ﬁHW&%HkaS_Bz)Hy: —J20x (6) resulting equations lead to

with ko= w/c, c being the velocity of light in vacuum.
In Ref. [7], the above equations are used to calculate the f f dx’dz’[GAu—uAG]wa f dx'dz' Gda,J;
so-called incident field {",#(") generated by the particle * *

in motion and the solution of the radiation problem is treated =4mu(x,2) if z>f(x) (12)
as a grating problerf8] with an evanescent wave'(), H()
as the excitation field, the particle being neglected. In the =0 if z<f(x), (13

present case, since the electron hits the surface, an interac-

tion between the charge in motion and the interface shoulgvheres is a closed surface bounded by the contburI";

take place. As a result, the expression of the figld (<)) +T, (Fig. 3. Applying the second Green identifjL0] to

as given in Ref[7] and which has been calculated for a Egs.(12), (13) and taking into account th& must satisfy a

charge in the free space, is no longer valid. However, weadiation condition, one gets

shall show now that the actual transition radiation problem

can be reduced to a boundary value problem similar to the 1 .

Smith-Purcell problen[7] but with a different excitation Y +E di

field.
In the plane x,y=0,z) of incidence, since the wave vec- =0 if z<f(x) (15)

tor has no component on tlyeaxis so thaig is equal to zero

[7], the set of Eqs(5), (6) reduces to with

dG )
N =u(x,z) if z>f(x) (14

I5E,+ 926, +K5E,=0, (7) P

e nv’, (16)
P2H,+ 92 H,+KEH, = — 3,7 . (8)

Here, they component of the electric excitation field u“)(x,z)=if j dx'dz' G(x—x',z—2')3,T,.

£D(x,z,0,0) vanishes and the magnetic excitation field 4m ] Js

HY(x,2;0,0) has a sole component on thexis: the waves (17)

are TM polarized[7]. Hence, in such a plane, if we set

u(x,z) =Hy(x,z;0,w), we have to find a field: that satisfies

the (inhomogeneoysHelmholtz equation:

From a physical point of view, Eq$l14), (15) express the
fact that, under the stress", the charges on the boundary
I'; act in such a way as to extinguish the fieldzx f(x):
Au+k2u=—3d,7. . 9 this is usually referred to as the extinction theorghi].

HT ol 2Jx © From Eq.(17), we shall seek an integral representation of

a radiation condition as— + and the Neumann boundary U‘’. Noticing from Fig. 2 that ¢, u,) can be deduced from
condition: (uy,uz) by a® rotation, one has

du d:J(X,Z)=q expliagX)8'(2), (18
an % F0)=0. (10
n with ag=Kkqc/vg. As a consequence, E@L7) becomes

Herez=f(x) represents the surface profile. Such a prob- q
lem is well known in electromagnetish®] and becomes a u(x,2)= —f f dX'dZ" expliagX')8'(Z")
boundary value problem if one introduces the Green function 4 =
G: X G(x—X'cos®P—Z'sind,z

AG+k5G=—4md(x—x',z2—2"), (11 + X' sin®—2Z' cosd) (19
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q (o _ +o Finally, Egs.(10), (14), and (15) lead to the following
:—j dax’ exp(laOX’)f dz'6'(Z") integral equation:
477 — 0 ZO
XG(x—=X"cos®—-Z'sind,z+ X" sind—-2Z' cosd), 1 JG
(i) _ ’ ’ Ny — .
(20) u'(x,z) yp frldl u(x’,f(x")) an u(x,z) if z>f(x)
Z, being given in Fig. 2. Since according to the theory of (26)
distributions[12] (&",¢)=—{(35,¢"), one gets
q (o d =0 if z<f(x),
(i) - ' i X! )— 27
ut’(x,2) yp ﬁxdx exp(iagX )dZ' s
XG(x—X' cos®—2Z' sin®,z whereu is given by Eq.(24). This integral equation is to

be solved to obtain the total field(x,z), from which the
radiative part constitutes the transition radiation spectrum.
Now, one considers the plane wai#eyl) expansiorf13] of We _shal! malig a few comments about E2¢). Flrgt_, the
G excitation fieldu'” has been written as a superposition of a
couple of integrals. The first integral presents a singularity
da on z= —xtan® which indeed is the trajectory of the elec-
—exp(i ax+i7y|z|) (22 tron. Since its integrand does not satisfy the Helmholtz equa-
Y tion, such an integral represents a nonradiative component
u®. In the second integral, one recognizes a plane wave
expansion: it corresponds to the progressive waves generated
by a charge in motion which is suddenly stopped when it
0 I _ arrives onto the surfacgl4]. Second, a usual Neumann
ut(x,z)=— e da exp(iax) boundary condition is considered but in the present case, the
particle actually hits the surface and creates a singularity on
the impact poinD. However, the extinction theorem tells us

+X'sin®—2Z' cos®d). (22

+ oo

G(x,z)=ij

— o

with o®+ y?=k2, so that

0 a . . 12 .
X fﬁde’ ;smd>+5|gr(z+x sin®)cos® that Eq.(15) is also valid forz<f(x). If one introduces a
singular component in the integral and sets it equal to the
x exqi(ag—a cos®)X' +iy|z+X' sin®|]. opposite of the singularity ofi), both of the singularities

would cancel each other on the profide f(x) and a regular
boundary condition can actually be considered. When the
surface is flat and perfectly conducting, a classical approach
consists in involving the image charge: the singular compo-
nent is then the image of the particle in motion. For a nonflat
surface, such a classical approach cannot be used anymore

(23

In order to take the sign of+ X'sin® into account, one
splits the integral alongX’ and gets finally

ui(x,2)= i[exp(—ia Isin®z) *”‘E and the'singylar component in tha_t case should be called the
’ A 0 Y generalized image of the particle in motion.
In order to prove the validity of the above investigations,
xexdia(x+zcotd)] we now calculate the power emitted when an electron hits a

perfect plang f(x) =0]. The limit equation for Eq(26) asz

asin® — y cos® is closed tof (x) is [9]]

x i(ag— acosd—ysind)

a sin® + ycosd
i(ag— acos®+ ysind)

+o da 1 ) 1 G
n Jiw 7 Eu(X,f(X)):U(')(X:f(X))_ yp jr dl/u(x',f(x’))%.
1
X exp(i ax+iyz) “

a sin® + y cos®
E -
i(ag— acosd+ ysind)

} for z>0. (24)  On the surface, Eq(28) reduces tou(x,0)=2u‘)(x,0) so
that the solution of the radiation problem for a perfect plane

To obtain Eq.(24) one uses the fact thaty/c is strictly
smaller than 1 and the Fourier transform of the Heaviside

step function _ 1 (+= . aG
u(x,z)=u(x,z)— —j dx'uM(x’",0) — (x—x',z).
27 ) —w an

+78(w) (25) (29

+oo . 1
fo dtexp(—lwt)zP(m

with P denoting the Cauchy principal value. Recalling Eq.(22), one gets
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G +o0 ) .
—(x—x’,z)=—f deexdia(x—x")+iyz] for z>0

" (30 9 Bo sin®(sin 60— B, cosd)
| V2mrker (1—Bocos® sin6)?— B3 cos gsir |

and finally (32

with Bo=vq/c. The angular factor in Eq32) is the same as
q (+=da the expression obtained in Réf:-5,14 for a perfectly con-
u(x,z)=u(””(x,z)——f —expliax+iyz) ducting surface and confirms the validity of the approach
Am )« vy presented in this paper.
) Transition radiation has been investigated from a theoret-
asin®— vy cos® ical point of view. From Maxwell equations, we have reduce
i(ag—acosd—ysind) the problem to a boundary value problem. The resulting in-
tegral equation can be solved by means of kndmmmeri-
for >0, (31) cal) tools. Peculiar aspects of such a radiation problem are
' the excitation field generated by the motion of the particle
and, since the particle hits the surface, a singularity on the
profile z= f(x). This difficulty can be overcome, as the sur-
where u(™ corresponds to the nonradiative component offace is perfectly conducting, by stating that the particle has a
u® given by the first integral in Eq24). It is worth noting  generalized image through the interface. Both particles can-
from Eq.(31) that the radiative component ofx,z) written  cel as they meet at the impact poldtand a regular bound-
as a plane wave expansion is the result of an interferenc@y condition can be used. Applying the formalism in the
between the radiative compondtite second integral of Eq. case of a plane interface gives known expression of the scat-
(24)] of u™ and the field emitted by the surface under theter_eo! power, (_:onf|rrr_1|ng_ at least in such a simple case, the
stress of the incoming component of the same figfd,  validity of the investigations presented here.

From an opticist’s point of view, this is a very unusual scat- Finally, it must be emphasized that B@8) is valid what-

tering situation. However, this result clearly recalls the clasSYer the profilez=1(x), provided that the second derivative

sical description of transition radiation in which the radiative\];vr(lg1 ZXISSLE?fE[i?:]e. vaL':rrl g)r:rg?gistgria;rotf?lzrioggnZ? d;%%“ef%r
field is written as a superposition of a direct field and a ﬁeldexample a grating16] '
reflected by the perfectly conducting surfddes,14. '

Now, the saddle point methdd5] is used to express the The authors gratefully acknowledge J. Harthong, P.
integral in Eq.(31) in the far field so that the scattered power Rullhusen, N. Maene, and P. Henri for valuable discussions
is proportional to which led to this work.

|u(5°)(r,6)|2
‘2

a sin® + y cos®
+ - -
i(ag—acosd+ ysind)
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