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Abstract

Smith-Purcell radiation is produced when a charged particle moves close and paraliel to a diffraction grating. Calculation
of Smith-Purcell spectra is therefore linked to a special grating problem, involving incident evanescent waves describing the
field of the moving electron. For large period gratings, radiation in the far-infrared and millimetric range is produced, in a
spectral range where metallic gratings can often be considered as infinitely conducting. In that case, conservation laws and a
reciprocity theorem are derived for Smith-Purcell radiation by applying techniques from electromagnetic grating theory.
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1. Introduction

In 1953 Smith and Purcell [1] observed light emission
by a fast electron beam passing close to a periodic struc-
ture. Several theories have been proposed to explain the
properties of the observed radiation. Oscillating charges or
dipoles [1-3] have been considered, as well as periodic
current sheets of deflected electrons [4]. In 1961, Toraldo
di Francia [5] applied the concept of diffraction of evanes-
cent waves to explain Smith-Purcell (SP) radiation from
shallow gratings, but at that time no rigorous theory was
available for arbitrary grating profiles. His model was later
on improved by van den Berg [6] who applied a full
electromagnetic diffraction theory [7,8] to the special case
of the SP effect. According to Gover, Dvorkis and Elisha
[9] who made a comparison of different models describing
the Smith-Purcell effect, the van den Berg model fits best
the experimental data, as long as the electron beam does
not hit the grating, producing other types of radiation
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[10-14]. Recent experiments with higher energies elec-
trons [15-17] reattracted the interest on SP radiation as a
potential source of far infrared radiation and the theoretical
description of the phenomenon has been extended by
considering a charged particle moving parallel to the grat-
ing surface at an arbitrary angle with respect to the grating
rulings [18]. A spectacular property of perfectly conducting
gratings in spectroscopy is described by the so-called
reciprocity theorem [19]: the efficiency in the zero order of
diffraction does not change when the grating is rotated by
180° around an axis perpendicular to its surface. Together
with the energy conservation theorem, the reciprocity theo-
rem shows that as long as there are only two propagative
diffracted orders (i.e. the zero order at specular reflexion
and the —1 order), the efficiency in the —1 order is also
insensitive to a 180° rotation of the grating. The purpose of
this work is to establish the reciprocity theorem for Smith-
Purcell radiation.

2. Smith-Purcell theory

Fig. 1 gives a schematical description of a Smith-Purcell
experiment at arbitrary incidence angle to the rulings and
of the relevant geometrical quantities. The electron moves
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Fig. 1. Schematical layout of the geometry of a Smith-Purcell
experiment. The electron moves parallel to a perfecly conducting
grating, with constant speed. The trajectory of the electron makes
an angle ¥ with the grating rulings.

in vacuum parallel to the surface of a perfectly conducting
grating. The grating profile is described by a periodic
function z=f(x)=f(x+ D) with the direction of the
rulings parallel to the y axis and the top of the grating lies
in the (x,y) plane. The electron moves along a trajectory
z =2z =const and ¥ is the angle between the x axis and
the projection of the electron trajectory onto the (x—y)
plane. The electron moves with constant velocity v = v(cos
Vi, +sin Wi, ) i,i,.i, are unit vectors in the x,y,z
direction, respectively. We adopt the conventions used in
Refs. [6,18,21], to which the reader is referred for further
details. The incident real field vectors E'(x,y,z,t) and
H'(x,y,z,1) are expanded in terms of Fourier integrals:

Ei(x,y,2.t)
— 2y ! +md * i .
@n?) Re[fo mjo dBEi(x,2;8,)

Xexp(iﬁy—iwt)], (N
Hi(x,y,z,t)
_ 2y~ + * i .
@2n?) Re[fo dwj; dBH'(x,z;8,0)

Xexp(iBy — iwt)]. 2)

The Fourier components satisfy the Maxwell equations
which take the following form:
(V+iBi,) xH' +iweE' = J, )
(V+iBi,) XE' ~iwp,H' =0, (4)
with V=4i,+di, and J=J(x,z;8,w) being the
Fourier transform of the current density distribution:

J(x,2:8,0) = qvd(z—z){i +i,tan¥}

x
Xexp|i(w— Buvsin?)

. 5
vcos¥ ®)
The Maxwell equations show that the x and z compo-

nents of the Fourier field vectors E' and H' can be
expressed as functions of their y components which satisfy
the two-dimensional Helmholtz equations:

(82 +d2)E\+ (K> — B*)E,
, B :
= —iwpd, + (0,4, +i1BJ,). (6)
T e )

(82+082)H,+ (K= B*)H,=—d.J,. )

Here k= w/c (c is the speed of lightin vacuum). We
obtain the solutions of these equations as:

Hy(x.2;B.)
q . . .
= —551gn(z—zo)exp(1a0x+ i1¥0lz = 20l), (3)
1/2 b
) q{mn Bc/v — ksin®
o2 2
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in which a, = @/(vcos¥) — Btan¥ and y, = i(a? + B2
— k)% with (a2 + B> —k»'/? > 0. As a consequence
of the limited speed of the electron v < ¢, ad + B%> k2
Therefore, 7y, is always imaginary and nonzero, which
means that the electromagnetic field generated by the
moving electron is represented by a set of evanescent
plane waves exponentially decaying in the direction away
from the electron trajectory. The reflected fields E* and H'
are also expanded as Fourier integrals in which the Fourier
transforms E', H' satisfy the source-free Maxwell equa-
tions:

(V+iBi,) XE' —iwp,H' =0, (10)
(V+iBi,) XH' +iweE' =0, (1)

and the boundary condition for a perfectly conducting
surface n X (E' + E™) =0, in which n is the unit vector
normal to the surface (see Fig. 1). The three-dimensional
vectorial problem is separated into two scalar problems of
two dimensions called the two fundamental cases of polar-
ization, viz. the E-polarization and the H-polarization. The
y components of the electric and magnetic fields are
expressed in terms of Rayleigh expansions [20]:

4o
E;,(x,z;ﬁ,w) = Z E;v,,( B.w)exp(ia,x +1iy,z),

o (12)

+o
Hi(x.z;8,0)= Y, H] (B.w)exp(ia,x +iy,2),
(13)

in which a, = ay + 27n/D and v, = (k* = B2 — a)!/?
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with Re(y,) >0 and Im(y,) > 0. In an experiment, the
detector is usually at a large distance from the grating so
that neither the evanescent field of the electron hitting
directly the detector nor the evanescent components of the
Rayleigh expansions are detected. Then, the Smith-Purcell
radiation is made up of the diffracted propagating waves,
i.e. those waves for which Im(+y,) = 0. Therefore, one must
have a2+ B2 <k? and B is restricted to |B]<k. As a
consequence, a, > k and only some of the negative orders
n <0 from the Rayleigh expansions are propagative and
contribute to the SP spectrum. Generally one chooses for
grating problems angles of incidence and emergence which
are linked to the grating axes. For SP diffraction problems
however, it is more natural to choose emergence angles
linked to the electron trajectory. Considering waves with
fixed parameter k, and introducing angles of emergence
(6, ¢) linked to the electron trajectory (see Fig. 1), one has
for propagating waves:

a, = k(cos¥ cos @, — sin¥ sin#, sinp,), (14)
B = k(sin¥ cos 6, + cos¥ sinf, sing,), (15)
¥, =k sin6, cos ¢, (16)

and one obtains the Smith-Purcell dispersion relation:

D fc
nA cos‘I’(v cosOn). (17)

Radiation of constant wavelength is emitted along a
cone of aperture 6, centered on the projection of the
electron trajectory onto the (x—y) plane. For ¥ =0° and
relativistic electrons (E > E;, = 0.511 MeV), v/c = 1 and
to tune the radiation, one has to change the angle of
observation 6 or to use a set of gratings with different
periods. Rotating the grating changes the apparent grating
period seen by the electron according to Eq. (17) and could
constitute a more practical way of tuning the SP emission,
as it would not require to change the set-up used to collect
the radiation.

The real part of the complex Poynting vector represents
the power density (power per unit area) radiated in spectral
order n:

_— .. 1 w
fEnXHn ZEkT———z-(E()'E | +M0|H | ) s

B
(18)

in which k,=(a,,B8,y,) is the wave vector of the
diffracted radiating wave of order a. Introducing the radia-
tion factor (analogous to the reflection coefficient in spec-
troscopy) and the interaction range [8,18]

IR(8.0,%) = co/ Mol Ey,I° +1H %)

(- A>{

xexp(2lyylzg), (19)

b (0,0.%) = 20yl
A,cos¥
= [(c/u—Asm‘I/) + cos’¥ (A% — l)]
(20)
with
A= B/k=sin¥ cosd + cos¥ sinf sin g, (21)

one can derive the power emitted in a given spectral order
n into a solid angle d {2 in direction (6, ¢) by the electron
passing by one grating period *:

(dp) qu IR (8,¢.% )| sin
— _ sin’0 cos%

Xexp( —20/ M) (22)
The parameter A, can be considered as an effective
interaction range: if the electron passes within the interac-
tion range, it effectively contributes to the nth order
Smith-Purcell radiation in the (8,¢) direction. If it passes
far from the grating (i.e. several times the interaction
range) the electron will not produce Smith-Purcell radia-
tion with a significant intensity. The z, dependence of the
incident field is introduced explicitly in the definition of
the radiation factor. With this definition of the radiation
factor, the total power of SP radiation emitted by an
electron beam is obtained integrating (22) analytically over
the beam profile [9,18,21] and multiplying by the total
number of grooves of the grating. When a pulsed beam is
used and the wavelength of the emitted photons is compa-
rable to the bunch length, coherence effects appear which
greatly enhance the emitted power density [16,17].

3. Power relations and reciprocity theorem

We consider now the following two Smith-Purcell con-
figurations of Figs. 2a, 2b. The electron moves with a
speed v=v cos ¥ i, +v sin ¥ i, in the first case, and
with a speed v = —v in the second case. All the other
parameters are the same. The total fields above the grating
E,=E,+Ejand H,=H}+ H; are given by Eqgs. (8), (9)
and (12) (13) in the ﬁrst case. In the second case, the total
fields above the grating when 0 < z < z, are given by:

q [Bo [ —B'c/v—ksin¥

E=—oo|— | ———
: Yo cos¥
xexp(iagx —ivy(z—z))

+ )Y &l

m= —©

exp(ia, x +iy,z2), (23)

>In the corresponding formula for ¥ = 0° published in Refs.
[9,21] a factor #” /2 is missing.
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with @)= —w/(vcos¥) — B'tan¥, v)=i(a) + B>~
kD2 al = ay+27mm/D and v, = (k* — B> — a})'/?
with Re(y,) >0 and Im(y,)>0. With this definition,
only some of the positive orders of diffraction m >0
contribute to the Smith-Purcell radiation in the second
configuration. To establish the power relations [6,18], one
makes use of the following lemma: if S is a periodic
perfectly conducting surface with period D described by
z=f(x) and {U,U’} are two functions satisfying the
Helmholtz equation and the Dirichlet boundary condition
{U=0,U"=0} or the Neumann boundary condition {n -
VU =0, n- VU’ =0}, then above the grating (z > 0) [19]:

[P {uay - vsuydx-o. (25)
Xy

We apply relation (25) to the couples of functions
{E,.E'}, {H,H'}, {&,&) and {77} (A" being
the complex conjugate of A). Noting that for a propagative
order n, y,” =v, and for a nonpropagative order n,
v," = —,, one obtains:

- o [ Be/v—ksin¥
Z IE}nn"y't:q 6_ (7

it o Yo cos¥
XRe( E% yexp(ivg20))- (26)
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XRe( &, exp(iv)29)). (28)

Y 1Z Py = —qRe(#]gvh exp(ivhze)).  (29)
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The summations are taken over propagative orders n or m
only (2> 0 and y? > 0, respectively). In the **classical”
grating problem, a grating is illuminated by an incident
plane wave, and one calculates the distribution of the
diffracted waves and their intensities. A first test to check
the validity of the results is to apply the energy conserva-
tion theorem: the sum of the energies of the diffracted
propagative orders has to be equal to the energy of the
incident wave. In the special case of the Smith-Purcell
diffraction this form of the energy conservation theorem
does not hold because the incident waves are evanescent
and carry no energy (the energy conservation theorem
applies for the system electron plus electromagnetic field).
Relations (26) and (27) are equivalent to the energy bal-
ance criterion [19] in spectroscopy and can be used to test

the validity of the results. We will refer to them as the
power relations for Smith-Purcell radiation.

Applying relation (25) to {& (- B,w);E(B,w)} and
{# (- B,w)E(B,w)}, one obtains: ’

Elo(—B,@) = —E,(B.0), (30)
Zio(—B.w) = —H (B, w). (1)

These relations are equivalent to the reciprocity theorem
applied to the zero order of diffraction in spectroscopy
[19]. The difference is that in the SP case the zero order is
evanescent, while it is propagative when using the grating
for spectroscopy. An interesting consequence is obtained
by considering a wavelength A for which there is only one
propagative diffracted order. The combination of the power
relations (26)-(29) and the reciprocity relations (30) and
(31) for the zero order gives the reciprocity relations for
the first order of diffraction:

&0 (—B.@)* =1E]_(B.w), (32)
l#0(—B.w) =H]_(B.w) (33)

These relations mean that when there is only one propaga-
tive diffracted wave, the amplitude of this single wave is
the same in the two configurations. In fact, Fig. 2c shows
that ones passes from one configuration to the other by
applying a 180° rotation around the z axis. Taking into
account the expressions of the fields in both cases, one can
finally obtain the following properties:

Fig. 2. Smith-Purcell configurations for the reciprocity theorem:
(a) the electron moves at speed v parallel to the grating surface;
(b) the electron moves at speed — v parallel to the grating surface;
(c) a 180° rotation around the z axis applied to the first configura-
tion leads to the second case and demonstrates the reciprocity
theorem.
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Fig. 3. Nonsymmetric grating profile used in the computations to
illustrate the reciprocity theorem.

The coefficients of the zero order in the Rayleigh
expansions remain the same when the grating is rotated by
180° around the z axis [22]:

E;.o( B.w) =5 E_fv.o( B.w). (34)
H;,O(B’w)=180H;,O(B’w)' (35)

If only the —1 order contributes to the Smith-Purcell
radiation, its Rayleigh coefficients are the same after a
180° rotation of the grating:

|E;,—1(Bv‘”)|2=|1soE;,—1(B"‘))|2v (36)
|H,\r'.—|(3’w)|2=||30H,:,—1(B"”)|2’ (37)

and therefore the Smith-Purcell radiation factor is insensi-
tive to a 180° rotation of the grating:

|R—x(0sfp)|2=||80RA|(9,<P)|2. (38)

In that case, both the polarization of SP radiation as well
as the power density emitted by the electron remain the
same. To the author’s knowledge, these properties have
never been observed experimentally.

We illustrate the invariance theorem for the following
configuration: a 100 keV electron is interacting at an angle
¥ = 10° with the nonsymmetric grating described in Fig.
3. For this type of profile, a modal analysis [23,24] is well
adapted to solve the grating problem. Fig. 4 shows the
results for the radiation factor |R_(0,¢)I* for 0 <6<
180° and for a fixed angle ¢ = 20°. Solid line is for the
first case. Dashed line is for the second case after a 180°
rotation of the grating. For > 6_, = 60.72°, only one

10°
Electron energy: 100 keV
o' b ¥=10° IR_ (8,0
9=20° ———— LR 00
N 0 B
s 10 1 6=60.72°
5
o 10" .
10°F e ]
1 0-3 1 1 i 1 1
4] 30 60 90 120 150 180
6 (deg)

Fig. 4. Radiation factor |R_,(8,¢)* in the first order of diffrac-
tion at ¢ =20° when a 100 keV electron passes at an angle
W = 10° over the grating of Fig. 3. Solid line is for |[R_,(6.¢)I%
dashed line is for g0l R_ (8, ¢)I".

order is propagative and the curves are identical. At 6_, a
second order appears and a strong anomaly is visible on
the curve. This type of anomaly belongs to the Wood-
Rayleigh anomalies [25,26]. For lower angles, several
propagative diffracted orders contribute to the Smith-
Purcell spectrum and the curves are different.

4. Conclusion

Solving a grating problem usually involves numerical
approximations which can lead to convergence problems.
In order to check the validity of the results, one makes use
of the energy conservation theorem when convergence has
been achieved. For nonsymmetric grating profiles, the
reciprocity theorem is another test. For Smith-Purcell radi-
ation the incident electromagnetic field is evanescent and
usual expressions of these theorems cannot be used. Ap-
plying techniques from the electromagnetic theory of grat-
ings, the analogue of the energy conservation theorem and
of the reciprocity theorem in spectroscopy have been
derived for the Smith-Purcell effect and can be used as a
test for the accuracy of the computations. To the author’s
knowledge the predicted reciprocity properties have never
been observed experimentally. In particular, in Smith-
Purcell experiments with low energy electrons and optical
gratings for emission in the near-infrared or visible spec-
tral range [1,3,4,9-14], it seems difficult to avoid that
electrons hit the grating and other radiation mechanisms
like bremsstrahlung or transition radiation can contribute
to the observed radiation [10—14]). Under these conditions,
the reciprocity relations could also constitute an experi-
mental test for the Smith-Purcell model developed by Van
den Berg [6] and recently generalized by Haeberlé et al.
[18].
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