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Smith-Purcell radiation from electrons moving parallel to a grating
at oblique incidence to the rulings
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Smith-Purcell radiation is produced when a charged particle moves parallel and close to a diffraction grating.
We extend previous descriptions of the phenomenon by considering a particle moving parallel to the grating
surface at an arbitrary angle with respect to the grating rulings. The problem of calculating the emitted
radiation intensity is shown to be linked to a special grating problem involving evanescent incident waves and
conical diffraction. Conservation relations are derived by applying techniques from electromagnetic grating
theory, and Smith-Purcell spectra are calculated for some specific cases of practical interest.
[S1063-651%97)13403-1

PACS numbgs): 41.60—m, 42.25.Fx, 42.79.Dj

[. INTRODUCTION been carried out using electrons in the 50—200-keV energy
range, and recentlj16—19 also at MeV energies. Consid-

In 1953 Smith and Purcd]lL] found the first experimental erable efforts have been undertaK@9—-23 to build free-
confirmation for light emission by a fast electron passingelectron lasers based on the SP effect in an Orotron configu-
close to a periodic structure. The Smith-Purd&P effect ration[24].
belongs to the general class of radiation effects induced by The experiments and theoretical approaches have been re-
electrons interacting with a medium. These types of radiatiorstricted until now to electron trajectories perpendicular to the
can be modeled considering radiation from the medium, infulings of the grating. For electron trajectories at an angle
duced by the electric charge of the electron, or considering? #0° to the rulings, it can be expectétl, 25 that the ap-
refraction, reflection, and diffraction of evanescent waves asparent grating periodD/cos¥ would lead to a modified
sociated with the electromagnetic field of the electron. Thevavelength, thus offering the possibility of fine tuning the
Cherenkov radiatiofi2—4] is probably the most familiar of SP radiation. In optics it is knowfl0Q] that the spectral-
these phenomena. It is produced when a charged particengular distribution is strongly modified in conical diffrac-
moves inside a medium of index of refractiorat a velocity ~ tion geometry. The purpose of our article is to study this
v>c/n, ¢ being the vacuum speed of light, as indicated ineffect in the case of SP radiation, extending our previous
Fig. 1(a). The effect is very similar to the production of investigations[11] to electron trajectories at oblique inci-
acoustical Mach waves produced by objects moving at sudence, although still parallel to the grating surface. The for-
personic velocities. Closely related to the Cherenkov effect ignalism does not apply to electron trajectories which are not
the production of transition radiatidi®,6] when the electron parallel to the grating surface, as discussed, e.g., in
crosses a thin foilc.f. Fig. A(b)]. The diffraction of evanes- [12,13,25,2¢
cent waves by an obstacle as indicated in Fig) leads to

the so—ca}lled Qiﬁral_ction radiatiofv,8], of _vvhich the SP ef-' Il. GENERAL FORMALISM
fect, depicted in Fig. @), could be considered as a special
case for periodical structures. In Fig. 2 we give a schematical description of the experi-

In 1961, Toraldo di Francig§9] applied the concept of ment and the relevant geometrical quantities. The electron
diffraction of evanescent waves to explain the SP effect frommoves in vacuum at a distangg parallel to the surface of a
shallow grating profiles. Several methods have been prograting which is assumed to be electrically perfect conduct-
posed[10] in optics to find the reflection efficiency of a ing. The top of the grating is in thex(y) plane and the
grating from the Maxwell equations and the boundary con-grating profile is described by a periodic functias- f(x)
ditions. The applicability of these different methods to the=f(x+ D) with the direction of the rulings parallel to the
calculation of SP radiation has been discussed in our previaxis. By convention, the vectar normal to the surface is
ous papef11], to which we will refer as | in the following. pointing inside the grating. The electron moves at an aigle

After the discovery of the SP effect it soon became cleato the x_axis with constant velocity=uv (i,cos¥ +i sin¥),
that it might be used as radiation source in the millimeter towith i, iy, andi, being unit vectors in th&, y, andz direc-
visible range for which tunable sources were hardly or notions, respectively. In our formalism we follow closely the
available at that time. Several experimefi2-19 have notation of van den Berd27], also used in I. The field
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FIG. 2. Geometry of a Smith-Purcell experiment at oblique in-
cidence.

These Fourier components satisfy the Maxwell equations,
which take the following form:

(V+iBiy) X T +iweg®'= 7, (5)
(V+iBi,) X &' —iwue 77 =0, (6)

with V=(9XiAX+ &ZiAZ and 7= 7(x,z;8,w) being the Fourier
transform of the current density. The current density due to
the electron chargg= —e moving with velocityv is given

by

FIG. 1. Radiative processes by relativistic electrons interacting

with a medium.(a) Cherenkov radiation produced when the elec-
tron moves at constant speed>c/n in a medium of index of
refractionn. (b) Transition radiation produced when the electron
traverses a thin foil(c) Diffraction radiation generated when the
electron passes close to an obstacth. Smith-Purcell radiation
when the electron passes close to a periodic structure.

vectorsE'(x,y,z,t) andH'(x,y,z,t) of the Coulomb field of

the electron can be expanded in terms of Fourier integrals.

Ei(xvy’zit):(ZW)_ZJdeJ%dﬁ?fi(x,z;ﬁ,w)

X exp(i By —iwt), 1)

Hi(x,y,z,t)=(27r)’2fjwdwf dB.I% (x,z;8,)

X exp(i By —iwt), 2

Since the fields are real and only positive valueswoére
considered, the previous expressions are rewritten as

Ei(X'y,Z,t)=(2w2)‘1Re[fﬂcdwr dB&i (%, 8, )
0 —

X exp(i By — i wt) )

Hi(X'YaZ-t)=(2W2)_1RE{ J'Oﬂcdwfjc dB.77 (x,z,8,0)

X exp(i By — i wt) (4)

J(X,y,z,t)=qvé(x—vt cos¥,y—vt sitV,z—z,), (7)

and the corresponding Fourier transform is obtained as
T(%,2;B,0) = q8(z— 20){ix+ Iy tar¥}

v cosv |’ ®)

Xexr{i(w—,[i’v sind)

As for SP radiation produced by electrons moving perpen-
dicular to the grating rulings, the Maxwell equations allow
us to write thex andz components of the Fourier field vec-
tors #' and.7Z' as functions of theiy componentsE |, and

H 'y which satisfy the two-dimensional Helmholtz equations

—iopgdy+ wiao (dxdx+iBJy),
©)

(10

(95+ D Ey+(K2— B2E,

(F5+ ) Hy+ (k2= BAH, = — 3,4,

wherek=w/c, andc is the vacuum speed of light. The so-
lutions of these equations are given by

il

X exp(i apX+iyolz—zg|)

q

2

Mo
€0

Bclv—k sinl

i . —
Ey(X,Z,ﬁ,(I))_ yo COSI,

(11)

HL(0,2:B.0) = — 5 SOz~ 20)eXpliagx +i yol2— 2],
12
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in  which ay=wl/(v cosV)—gtart¥ and y,=i(ad+B> with a,=a+27n/D. These expressions are inserted into
—kA) V2 with (a3+B2—k?Y?>0. As a consequence of<c  the Helmholtz equations. For<z< the orthogonality of

it can be shown thaw3+pB%>k2 Therefore,y, is always the functions exp(a,x) on any intervak, <x<x,+D gives
imaginary and nonzero, which means that the electromag-

netic field generated by the moving electron is represented F2E} o(2:B,0) + ViEy (Z:8,) =0, (19
by a set of evanescent plane waves exponentially decaying in
the direction away from the electron trajectdry. 1). In the ﬁgH;,n(Z:,B.w)Jr yﬁH;,n(Z;B,wFO, (20

absence of any perturbing device the free electron moving in

empty space does not radiate. However, when the electrofiith )’ﬁ:kz_—ﬁz—a%- Above the grating, the solutions of
moves close to a grating the evanescent waves are diffractdéfiese equations are given by

by the grating and some of these diffracted waves may be

propagative, constituting the SP radiation. _ Eyn(z:B,0)=Ey (B, w)expliyn2), (21)
The reflected fields are given bfE'=E—E' and ) ) .
H'=H—H', with E(x,y,zt) andH(x,y,zt) being the total Hy n(z:8,@) =Hy (B, w)expliya2), (22

fields above the grating surface. These reflected fields can, ) i )
also be expanded as Fourier integrals with the Fourier trand¥ith R&7,)=0 and In{y,)=0. Solutions involving
forms &' and. 77" satisfying the source-free Maxwell equa- 8XP(—in2) are rejected because for:=0 they would rep-

tions resent waves propagating into the grating, ancyfp<0 and
z—o the amplitudes would become infinite. Using Egs.
(V+iBiy) X7 +iweg# =0, (13  (17-(22) the diffracted field above the grating can be writ-
Y ten as an infinite sum of outgoing propagative or evanescent
(V+iBiy) X &~ iwpo 70 =0, (14 ~ Plane waves:

The boundary condition for a perfectly conducting surface is
nXE=0, in whichn is the unit vector normal to the surface
(cf. Fig. 2, andE the total electric field. As for the incident
field, from the Maxwell equations one can show that xhe *

andz components of the electric and magnetic fields can be H{(x,z;8,w)= > Hy n(B,0)explianx+iy,z). (24)
expressed in terms of thecomponent& | andH . It can be n=-w=

shown from the boundary condition that there is no coupling
betweenE, and H, and, therefore, the three-dimensional

vectorial problem can be separated into two scalar problem ansions (23 an_d (24) are valid only f°FZ>° beca_use the
of two dimensions called the two fundamental cases of po- !fferent|al equation syster(iL9) apd (20) is only valid out-
larization (viz., the E and H polarization. In the side the grooves. They are valid, however, independent of

E-polarization case, wherE’yaEO and H;=0, one obtains the gfat.i”.g profile, even fo_r n_onanglytic profiles_ like, e.g.,
the Helmholtz equation for the reflected field semi-infinite screens pf vanishing thickness, and mdgpendent
’ of the surface material. In order to calculate the diffracted
2. 2\ pr 2_ Vel — fields, the coefficient&} , andH | , in the Rayleigh expan-

(%t 7By (K~ £, =0, @9 sions for the fields outside the g)?ooves have to be found. For

with the boundary conditiofe, =0 for the total field on the @ description of the methods used to solve this so-called

surface. In théd-polarization case, whei}=0 andH y #0, grating problem” see, e.g., the book by Peftit0].

one obtains

Ey(X,z;8,0)= Z_ Eyn(B,0)explianx+iy,z), (23

It is worth mentioning that the so-called “Rayleigh ex-

I1Il. RADIATION FACTORS

(95+ 2 H]+ (K2— BH) =0, (16) L
As stated above, the SP radiation is the sum of all propa-

with the boundary conditiof-VH, =0 on the surface. The 9ative waves diffracted from tg‘e ggatirlj'zge., all waves with
observable reflected field must be given by outgoing wavedM(¥)=0]. This requires thai;+ 5°<k*, which restricts
This is called the “radiation condition” [24]. Let aj>aj for positive n. Since af+5*>k* we would obtain
E}(x.z;8,0) and H{(x,z;8,0) be solutions for the re- a3+ B°>k? which is a contradiction. As a consequence
flected fields. Since exp{iaox)Ey, exp(—iagx)Hy, and there are no solutions for propagative waves with positive
the boundary conditions are periodic iy the quantities ordersn. For the outgoing wave it is most natural to intro-
exp(—iaox)E; and expiagx)H ; will also be periodic in  duce the observation angld®,¢) as depicted in Fig. 2,
x and can be represented as Fourier series. ThereforE,;for which are closely related to the anglés,{) used in | for
andH {, one obtains electron trajectories perpendicular to the rulings. In the treat-

ment of conical diffraction, however, it is more convenient to

introduce a different set of observation ang(€s®) as de-

E;(X.Z;B'w)=n:2_m Eyn(ziB.w)explianx), (17 picted in Fig. 3 and defined by
ap=—k sin®,sind,,, (25

H;,(x,z;,B,w)=n;oc Hy n(z; B, 0)explianx), (18) 8=k cosb, (26)
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FIG. 3. Construction of the emerging waves produced by the
diffraction of an incident wave with parametesg, 8, andy,. The
waves of different orders of diffraction are located on a cone of
aperture®,, centered around the axis, with cosb,= g/k.

Yn=k coP sind,,. (27

For an incident wave with parametesg, B, and vy,, the
corresponding propagative diffracted waves with parameters
a,, B, andy, are located on a cone. Figure 3 illustrates the
construction of the emerging waves for a diffraction order
When a conical diffraction mounting is used in spectroscopy, L 4 .
the parametersg, B, and y, of the incident wave are fixed
by the experiment. In contrast, in the SP case for a fixed
value ofk all values|g|<k are allowed, with one cone of 90 -60 -30 O 30 60 90
associated diffraction orders for each valuegofFrom Egs. (deg)

(25) and (26), for the wavelengti\=2x/k we obtain @ deg

6 (deg)

D c FIG. 4. Positions §,,,¢,,) of the first five Wood-Rayleigh
—nA\=—— | —sin¥ cosb,+cos¥ sin®, sind, |. anomalies for SP radiation produced by 2-MeV electrof@.
v

cos¥ T=0° (b) ¥=10°.
(28)
) . (ii) Observing SP radiation in first order=—1, the so-called
In the reference system of Fig. 2, the angles of Observat'O"Wood-Rayleigh anomalies’[28,29 are expected30] to

(6,¢) for a specific diffraction orden are given by be seen in the spectra at angtgsand corresponding wave-
. : . lengths N such that the maximum observable orders
an=k(cosV cosdy—sinW sindpsingn), (29 “__5_3 " satisfy Eq(33). For ¥=0 and ¢=0 this
. ) . leads to a simple formulgl1] which allows us to predict the
B=K(sin¥ cos,+cos¥ sind,siney), (300 angles where these anomalies are located. In the more gen-
eral casesV+#0 and ¢#0, a somewhat more complicated
Yn=Kk sing,cosp,, (31  quadratic expression x=sin 6,, sin ¢,, andy=cosé,, is ob-

tained, which yields),, as a function ofp,,:
and the diffraction law(28) becomes

Ay?—2By+C=0, (34)
A= D_|¢ L7 32 i
A= |5 0% - (32 with
. . . _ A=1+2m+ (m/cost)?, (35)
For =0 the well-known SP diffraction law is obtained.
From Eqgs.(29—(32) several peculiarities of SP spectra can B=m(x tan¥ + c/v) + (m/cos¥ )2c/v (36)
be deduced using the same arguments as(ijFor a certain '
wavelengthh the maximum observable diffraction ordeis C=x2+2m(c/v)x tan¥ + (m/cos?)?(c/v)?—1, (37)

given for 6,=180°,
andm=|n,J—1=1,2,3,... . In Fig. 4 we show two examples
= E 1+clv 33 calculated for 2-MeV electrons incident on a grating(at
max- N cosP ’ ¥=0° and(b) ¥=10°. As can be seen from Fig(l}, the
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Wood-Rayleigh anomalies for incidence angles0 are not dpP e?p? ”
distributed symmetrically to the observation plape0 per- (d_Q) :W IRn(8,¢,)|%sir?0 cose
n

pendicular to the grating.
The power densityi.e., energy per unit area and per unit X exp(—z/h™). (44)
time) radiated in spectral order is given by the real part of nt

the Poynting vector: ) o i )
Since the radiation factor defined in E40) does not depend

PR 1 o - - on the distance, of the electron trajectory to the grating
> TaX T, =§sz’82(80|Ey,n| +polHynl9kn, (38 surface the power of SP radiation emitted by an electron
beam is obtained integrating E@l4) over the beam profile
with k,=(a,,B,y,) being the wave vector of the propaga- [11,14 and multiplying by the total number of grooves of
tive diffracted wave. When the electron traverses one perio#he grating. When a pulsed beam is used and the wavelength
D of the grating the total radiated eneryy=3SW,, of all of the emitted photons is comparable to the bunch length,
spectral orders is equal to the work needed to move the coherence effects may have to be taken into accpLin:

electron against the action of the reflected figdd]; 19]. Such coherent effects will not be considered in the fol-
lowing.
D [~ o Lor el 0 Rotating the grating around theaxis has two main ef-
W:; angz fo de_mdﬁ; (3ENXTN) -z fects. First, the apparent grating period seen by the moving

(39) electron changes, and the emitted radiation wavelength

changes according to E¢32), offering a practical way for
with the summation taken over all spectral ordersfor  fine tuning the SP radiation without changing the electron
which v, is real. In analogy to the case wh&h=0°[11,27, energy nor the direction of observation. Second, the polar-

we introduce a modified radiation factBr,(6,¢,%) with ization of the SP radiation changes because the incoming
electromagnetic fielfEgs.(11) and(12)] is a function of the
” T e o angleWV. For ¥=0° the radiation emitted in the-z plane is
|Rn(8,¢,%)] “1-29) | mo Eyn/“F|Hyn purely H polarized. In contrast, when?+0°, purely

H-polarized radiation is emitted in a cone around yhaxis
X exp(2|yolzo), (400 defined by cosb,=(v/c)sin¥ (cf. Fig. 3. For ¥#0° the
SP emission diagram is not symmetrical with respect to the
B ) ) i x-y plane, nor to the plane containing the electron beam
A= K—cosﬁ sind + sing sing cosy. (42 trajectory ¢, =0.
As in the case wher&d’=0°, the exponential decay of the
radiation factor with increasing, is compensated for in Eq.
(40) introducing an additional factor e@}y,|zo). In the “classical” grating problem, a grating is illumi-
The absence of coupling between the fields shows that thgated by an incident plane wave, and a first test to check the
methods used to solve the grating problem for SP radiation afalidity of the calculations is to apply the energy conserva-
W¥=0° can also be used to calculate SP radiation at obliqu@on theorem, i.e., the sum of the energies of the diffracted
incidence, prOVided that the new eXpreSSionS for the incompropagative orders has to be equa] to the energy of the inci-
ing fields, the dispersion relation, and the radiation factorgient wave. In the special case of Smith-Purcell radiation the
are used. With the definitiofd0) for the radiation factors, energy conservation law is valid for the system electron plus
from Eqgs.(38) and (39 for the energy radiated in spectral electromagnetic field. For the Rayleigh coefficients, modified

IV. CONSERVATION RELATIONS

ordern we finally obtain conservation relations can be established. They are similar to
22 2 sir? 2 those for Smith-Purcell radiation at perpendicular incidence,
W o DT [~ (2 simé cose R NNE a demonstration of which can be found[27], to which the
n 3 | n( 0!@1 )| . . .
2|nleq Jo J-mr2 A interested reader is referred for further details. Bebe a
N periodic perfectly conducting surface with peridd, de-
X exp(—2zo/hjp)sindd e de, (42 scribed byz=f(x), andU andU’ two functions satisfying

in which A is a function of 8 according to Eq(32), and
introducing an interaction range

h”—l—)\ s¥[(c/lv—A sin)?
im—2|y0|—47_rco [(clv siny)

+(A%—1)codV¥] 12 (43 "

which agrees with the previously fourjd1,27] expression -
when¥=0°. The power emitted in spectral orderinto a x; N x+D X

solid angled(} in direction(6,¢) by one electron per second

traversing one perioB of the grating at a distancg is then FIG. 5. Domain to which Green’s theorem is applied in the
given by[31] derivation of Eq.(49).
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the Helmholtz equation above the surfdce., for all z=0).
Then we have

V2U+k?U=0, (45)
VU’ +k?U’ =0, (46)

and, as a consequence,
U’'vV2U-UV2U'=0. (47

Applying the two-dimensional Green’s theorem to a domain

Sinside the closed conto@ described in Fig. 5, the follow-
ing equation is obtained:

f f (U'V2U-UV2U')dsS
S

= 3€ {U(n-VU’)—U’(n-VU)}ds=0.
C
(48)
U andU’ will be identified later withE, ,EY or Hy ,H for
the cases oE polarization orH polarization, respectively

(A* denoting the complex conjugate Aj. In the first casé)
and U’ satisfy the Dirichlet boundary conditiofie., U =0,

45 60 75 90 105 120 135

0 (deg)

U’'=0) and in the second case they satisfy the Neumann
boundary conditiori.e., n-VU =0, n-VU'=0). Taking into
account these boundary conditions, the contribution ftom
to the contour integral in EQ.(48) vanishes. Since
exp(—iagx)U and exp(iayx)U’ are periodic irx the con-
tributions fromL; andL, to the contour integra48) cancel.

As a consequence, only the contribution framremains in

the contour integration, and we obtain

Xy +D
f {Ug,U’ —U’g,Utdx=0 (49)

X1

for any z=0 above the rulings. Applying Eq49) to the
couplesEy,E; and Hy,H§ in the region Bz<z;,, one ob-
tains the relations

2 By l*ym=9K RAE) expliyozo)], (50
n
2 Hy P v= —a ReH] gyoexmivozo)l,  (51)
n
in which
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0.5k FIG. 7. SP spectra in first or-
) der ate=0° and for several tilting
0.0 0.0 angles ¥ in the angular range
0.0 0.0 2.0 45°<#<135°. See text for beam
parameters. Solid lines: lamellar
grating with a/D=0.1 and h/D
3.5 1.0 | | ; =0.5, and an electron energy of 2
' ! ' ' MeV. Dashed lines: sinusoidal
3.0b ) ) grating with a/D=0.1 and an
' 0.8 . electron energy of 10 MeV(a)
25 - \I,:OO, (b) ‘If=10°, (C) \1’2200,
= = and(d) ¥'=30°.
= a | = 0.6 =
% 2.0 T
a
e °
1.0
0.2 | -
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0'%.0 0.0 05 1.0 1.5 2.0
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wo\ Y4 Belv—k sin® power spectra, we integrated E@4) over a beam profile
K= 20) | yocos¥ (520 represented by a symmetrical two-dimensional Gaussian dis-

tribution with oy=0,=1.5 mm. The beam axis is at a dis-

The summations are taken over all propagative orders. Reld2NC€ Zo=1.5 mm above the grating, which is shielded
tions (50) and (51) are equivalent to the energy balance cri- @gainst electrons at<0. The grating period i® =1 mm, the
terion [10] in spectroscopy, and can be used to test the vatotal length is 10 cm and th@eak current is 10 A. Neither
lidity of the results. an angular divergence of the electron beam nor coherence
effects have been taken into consideration. The beam param-
V. RESULTS eters are the same parameters as used in |, and have not been
' optimized to obtain maximum emission. Figure®)+#7(d)

In Figs. 8a)—6(d) we show radiation factorlR_,|* calcu-  show the spectra obtained from the radiation factors depicted
lated for the first diffracted order as a function of the tilting in Fig. 6. The results are presented as functions of the wave-
angle ¥ and the observation anglé, but at fixed angle length using Eq(32). In the forward direction the spectra are
¢=0°. Solid lines are for an electron energy of 2 MeV, andcharacterized by strong variations near Wood-Rayleigh
the grating has a rectangular profile wihD =0.1 anda/D  anomalies for the lamellar grating. The curves for the sinu-
=0.5, as used before in I. We used the modal expansioroidal grating are rather smooth, except in a very narrow
formalism[32,33, which is suitable for this type of grating. angular range near a Wood-Rayleigh anomaly. In order to
The dashed curves are for a sinusoidal grating with=0.1  maximize the observed intensity when using lamellar grat-
and an electron energy of 10 MeV, as also used before in ings, for a certain observation angkthe corresponding op-
For this type of shallow gratings the Rayleigh meti8d]  timum angleg has to be chosen, usually close and abgye
has proven to be corref35]. In both cases, numerical imple- as given in Fig. 4. For both types of gratings we observe a
mentation of the grating problem requires a truncation of thalecrease of the radiated emission with increasing aWgle
infinite Rayleigh expansions. The order of truncation wasThis could limit the interest of using Smith-Purcell radiation
increased until convergence had been achieved, and the aat oblique incidence to produce tunable radiation. In Fig. 8
curacy of the computation was checked using the conservave show the(6,¢) dependence of the spectrum fér=10°
tion relations(50) and (51). In order to arrive at realistic and the same conditions as in Fig. 7 for the lamellar grating.



4682 HAEBERLE RULLHUSEN, SALOME AND MAENE 55

3 2.0 T T T 1
2.5 i i
1.5 —
2 —
% i _
1.5 %
L ~ 1.0F =
: G
1 S I |
T
0.5 0.5+ -
0 T T T T T i i
dP/dQ (mW) 135 120 105 90 75 60 45 0.0 L1 1 1 |

-45 -30 -15 0O 15 30 45
0 (deg) 9 (deg)

FIG. 8. SP spectrum in first order for a 2-MeV electron beam I . .
interacting with a lamellar grating at an incidence anfe:10°. FIG. 9. SP spectrum in first order as a function of the azimuthal

Same beam and grating parameters as in Fig. 7. The electron passa«b,n@!e ¢ for a_2-!\/|ev electron be?m interacting with a '?me”a‘
over the grating from left to right grating at an incidence anglt=10°. Same beam and grating pa-

rameters as in Figs. 7 and 8. The observation adglg2.5° is close

Contrary to SP radiation produced by electrons moving perEo the|nmat =5 Wood-Rayleigh anomaly.

pendicular to the rulings, the emission pattern is not sym- . . )

metrical with respect to the angle. The maxima in the N9S- The @ffracﬂon Ia}w and a general expression for the'SP
spectral distribution reflect théy,¢) relation of the Wood- POWer emitted by a single electron moving over the grating
Rayleigh anomalies given by Eq&4)—(37). In Fig. 9 we have been derived. Relations to check the validity of the
show the ¢ dependence of the spectrum &£52.5° (A numerical solutions of the SP grating problem have been
—0.419 mm before and close to thén,.|=5 Wood- given. Tilting the grating with respect to the electron beam
Rayleigh anomaly for the same lamellar grating and electroff@J€ctory offers a convenient way of fine tuning the wave-
beam as in Fig. 8. The emission is strongly asymmetric witH€N9th of the emitted radiation. By generalizing this theory
respect to the electron beam trajectory and maximum emid®" coherent radiation, it could be applied to the study of

sion occurs in this case at an azimuthal angte—12° orotron configurations. However the optimization of experi-
ments using SP radiation at oblique incidence involves care-

ful computation of the spectral-angular distribution taking
into consideration the position of the Wood-Rayleigh anoma-
We have calculated SP radiation produced by an electrolies.
moving parallel to a grating at arbitrary angles with respect
to the rulings. The SP effect has been treated as a special
case of conical diffraction by a grating, when the incident
electromagnetic field is evanescent. The radiation facto— One of us(O.H.) gratefully acknowledges the help of J.
equivalent to the diffraction coefficients—was calculated apHarthong and Y. Takakura on several mathematical prob-
plying technigues from the electromagnetic theory of gratdems, and for valuable theoretical remarks and suggestions.

VI. CONCLUSIONS
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