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Smith-Purcell radiation from electrons moving parallel to a grating
at oblique incidence to the rulings
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Smith-Purcell radiation is produced when a charged particle moves parallel and close to a diffraction grating.
We extend previous descriptions of the phenomenon by considering a particle moving parallel to the grating
surface at an arbitrary angle with respect to the grating rulings. The problem of calculating the emitted
radiation intensity is shown to be linked to a special grating problem involving evanescent incident waves and
conical diffraction. Conservation relations are derived by applying techniques from electromagnetic grating
theory, and Smith-Purcell spectra are calculated for some specific cases of practical interest.
@S1063-651X~97!13403-1#

PACS number~s!: 41.60.2m, 42.25.Fx, 42.79.Dj
l
ing

b
tio
in
rin
a
h
f
tic

in
f
s
t

ia

f
om
r
a
on
he
ev

ea
t
no

rgy
-

gu-

n re-
the
gle

e

-
is
us
i-
or-
not
in

ri-
tron

ct-

e

e

I. INTRODUCTION

In 1953 Smith and Purcell@1# found the first experimenta
confirmation for light emission by a fast electron pass
close to a periodic structure. The Smith-Purcell~SP! effect
belongs to the general class of radiation effects induced
electrons interacting with a medium. These types of radia
can be modeled considering radiation from the medium,
duced by the electric charge of the electron, or conside
refraction, reflection, and diffraction of evanescent waves
sociated with the electromagnetic field of the electron. T
Cherenkov radiation@2–4# is probably the most familiar o
these phenomena. It is produced when a charged par
moves inside a medium of index of refractionn at a velocity
v.c/n, c being the vacuum speed of light, as indicated
Fig. 1~a!. The effect is very similar to the production o
acoustical Mach waves produced by objects moving at
personic velocities. Closely related to the Cherenkov effec
the production of transition radiation@5,6# when the electron
crosses a thin foil@c.f. Fig. 1~b!#. The diffraction of evanes-
cent waves by an obstacle as indicated in Fig. 1~c! leads to
the so-called diffraction radiation@7,8#, of which the SP ef-
fect, depicted in Fig. 1~d!, could be considered as a spec
case for periodical structures.

In 1961, Toraldo di Francia@9# applied the concept o
diffraction of evanescent waves to explain the SP effect fr
shallow grating profiles. Several methods have been p
posed@10# in optics to find the reflection efficiency of
grating from the Maxwell equations and the boundary c
ditions. The applicability of these different methods to t
calculation of SP radiation has been discussed in our pr
ous paper@11#, to which we will refer as I in the following.

After the discovery of the SP effect it soon became cl
that it might be used as radiation source in the millimeter
visible range for which tunable sources were hardly or
available at that time. Several experiments@12–15# have
551063-651X/97/55~4!/4675~9!/$10.00
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been carried out using electrons in the 50–200-keV ene
range, and recently@16–19# also at MeV energies. Consid
erable efforts have been undertaken@20–23# to build free-
electron lasers based on the SP effect in an Orotron confi
ration @24#.

The experiments and theoretical approaches have bee
stricted until now to electron trajectories perpendicular to
rulings of the grating. For electron trajectories at an an
CÞ0° to the rulings, it can be expected@1,25# that the ap-
parent grating periodD/cosC would lead to a modified
wavelength, thus offering the possibility of fine tuning th
SP radiation. In optics it is known@10# that the spectral-
angular distribution is strongly modified in conical diffrac
tion geometry. The purpose of our article is to study th
effect in the case of SP radiation, extending our previo
investigations@11# to electron trajectories at oblique inc
dence, although still parallel to the grating surface. The f
malism does not apply to electron trajectories which are
parallel to the grating surface, as discussed, e.g.,
@12,13,25,26#.

II. GENERAL FORMALISM

In Fig. 2 we give a schematical description of the expe
ment and the relevant geometrical quantities. The elec
moves in vacuum at a distancez0 parallel to the surface of a
grating which is assumed to be electrically perfect condu
ing. The top of the grating is in the (x,y) plane and the
grating profile is described by a periodic functionz5 f (x)
5 f (x1D) with the direction of the rulings parallel to they
axis. By convention, the vectorn normal to the surface is
pointing inside the grating. The electron moves at an anglC
to the x axis with constant velocityv5v~îxcosC1îysinC!,
with îx , îy , and îz being unit vectors in thex, y, andz direc-
tions, respectively. In our formalism we follow closely th
notation of van den Berg@27#, also used in I. The field
4675 © 1997 The American Physical Society
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vectorsEi(x,y,z,t) andH i(x,y,z,t) of the Coulomb field of
the electron can be expanded in terms of Fourier integra

Ei~x,y,z,t !5~2p!22E
2`

1`

dvE
2`

2`

dbE i~x,z;b,v!

3exp~ iby2 ivt !, ~1!

H i~x,y,z,t !5~2p!22E
2`

1`

dvE
2`

`

dbH i~x,z;b,v!

3exp~ iby2 ivt !, ~2!

Since the fields are real and only positive values ofv are
considered, the previous expressions are rewritten as

Ei~x,y,z,t !5~2p2!21ReF E
0

1`

dvE
2`

`

dbE i~x,z;b,v!

3exp~ iby2 ivt !G , ~3!

H i~x,y,z,t !5~2p2!21ReF E
0

1`

dvE
2`

`

dbH i~x,z;b,v!

3exp~ iby2 ivt !G . ~4!

FIG. 1. Radiative processes by relativistic electrons interac
with a medium.~a! Cherenkov radiation produced when the ele
tron moves at constant speedv.c/n in a medium of index of
refractionn. ~b! Transition radiation produced when the electr
traverses a thin foil.~c! Diffraction radiation generated when th
electron passes close to an obstacle.~d! Smith-Purcell radiation
when the electron passes close to a periodic structure.
.

These Fourier components satisfy the Maxwell equatio
which take the following form:

~“1 ib îy!3H i1 iv«0E
i5J , ~5!

~“1 ib îy!3E i2 ivm0H
i50, ~6!

with “5]xîx1]zîz and J5J ~x,z;b,v! being the Fourier
transform of the current density. The current density due
the electron chargeq52e moving with velocityv is given
by

J~x,y,z,t !5qvd~x2vt cosC,y2vt sinC,z2z0!, ~7!

and the corresponding Fourier transform is obtained as

J ~x,z;b,v!5qd~z2z0!$ îx1 îy tanC%

3expF i ~v2bv sinC!
x

v cosCG . ~8!

As for SP radiation produced by electrons moving perp
dicular to the grating rulings, the Maxwell equations allo
us to write thex andz components of the Fourier field vec
torsE i andH i as functions of theiry componentsE y

i and
H y

i which satisfy the two-dimensional Helmholtz equation

~]x
21]z

2!Ey
i 1~k22b2!Ey

i 52 ivm0Jy1
b

v«0
~]xJx1 ibJy!,

~9!

~]x
21]z

2!Hy
i 1~k22b2!Hy

i 52]zJx , ~10!

wherek5v/c, andc is the vacuum speed of light. The so
lutions of these equations are given by

Ey
i ~x,z;b,v!5

q

2 S m0

«0
D 1/2Fbc/v2k sinC

g0 cosC
G

3exp~ ia0x1 ig0uz2z0u! ~11!

Hy
i ~x,z;b,v!52

q

2
sgn~z2z0!exp~ ia0x1 ig0uz2z0u!,

~12!

g
-

FIG. 2. Geometry of a Smith-Purcell experiment at oblique
cidence.
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55 4677SMITH-PURCELL RADIATION FROM ELECTRONS . . .
in which a05v/~v cosC!2b tanC and g05i (a 0
21b2

2k2)1/2 with ~a0
21b22k2!1/2.0. As a consequence ofv,c

it can be shown thata0
21b2.k2. Therefore,g0 is always

imaginary and nonzero, which means that the electrom
netic field generated by the moving electron is represen
by a set of evanescent plane waves exponentially decayin
the direction away from the electron trajectory~cf. I!. In the
absence of any perturbing device the free electron movin
empty space does not radiate. However, when the elec
moves close to a grating the evanescent waves are diffra
by the grating and some of these diffracted waves may
propagative, constituting the SP radiation.

The reflected fields are given byEr5E2Ei and
Hr5H2H i , with E(x,y,z,t) andH(x,y,z,t) being the total
fields above the grating surface. These reflected fields
also be expanded as Fourier integrals with the Fourier tra
formsE r andHr satisfying the source-free Maxwell equ
tions

~“1 ib îy!3H r1 iv«0E
r50, ~13!

~“1 ib îy!3E r2 ivm0H
r50. ~14!

The boundary condition for a perfectly conducting surface
n̂3E50, in which n̂ is the unit vector normal to the surfac
~cf. Fig. 2!, andE the total electric field. As for the inciden
field, from the Maxwell equations one can show that thex
andz components of the electric and magnetic fields can
expressed in terms of they componentsE y

r andH y
r . It can be

shown from the boundary condition that there is no coupl
betweenEy and Hy and, therefore, the three-dimension
vectorial problem can be separated into two scalar probl
of two dimensions called the two fundamental cases of
larization ~viz., the E and H polarizations!. In the
E-polarization case, whereE y

rÞ0 andH y
r50, one obtains

the Helmholtz equation for the reflected field,

~]x
21]z

2!Ey
r1~k22b2!Ey

r50, ~15!

with the boundary conditionEy50 for the total field on the
surface. In theH-polarization case, whereE y

r50 andH y
rÞ0,

one obtains

~]x
21]z

2!Hy
r1~k22b2!Hy

r50, ~16!

with the boundary conditionn̂•“Hy50 on the surface. The
observable reflected field must be given by outgoing wa
propagating away from the grating and bounded forz→`.
This is called the ‘‘radiation condition’’ @24#. Let
E y

r (x,z;b,v) and H y
r (x,z;b,v) be solutions for the re-

flected fields. Since exp(2 ia0x)E y
i , exp(2 ia0x)H y

i , and
the boundary conditions are periodic inx, the quantities
exp(2 ia0x)E y

r and exp(2 ia0x)H y
r will also be periodic in

x and can be represented as Fourier series. Therefore, foE y
r

andH y
r , one obtains

Ey
r ~x,z;b,v!5 (

n52`

`

Ey,n
r ~z;b,v!exp~ ianx!, ~17!

Hy
r ~x,z;b,v!5 (

n52`

`

Hy,n
r ~z;b,v!exp~ ianx!, ~18!
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with an5a012pn/D. These expressions are inserted in
the Helmholtz equations. For 0,z,` the orthogonality of
the functions exp(ianx) on any intervalx1<x<x11D gives

]z
2Ey,n

r ~z;b,v!1gn
2Ey,n

r ~z;b,v!50, ~19!

]z
2Hy,n

r ~z;b,v!1gn
2Hy,n

r ~z;b,v!50, ~20!

with g n
25k22b22a n

2. Above the grating, the solutions o
these equations are given by

Ey,n
r ~z;b,v!5Ey,n

r ~b,v!exp~ ignz!, ~21!

Hy,n
r ~z;b,v!5Hy,n

r ~b,v!exp~ ignz!, ~22!

with Re~gn!>0 and Im~gn!>0. Solutions involving
exp~2ignz! are rejected because forg n

2>0 they would rep-
resent waves propagating into the grating, and forg n

2,0 and
z→` the amplitudes would become infinite. Using Eq
~17!–~22! the diffracted field above the grating can be wr
ten as an infinite sum of outgoing propagative or evanesc
plane waves:

Ey
r ~x,z;b,v!5 (

n52`

`

Ey,n
r ~b,v!exp~ ianx1 ignz!, ~23!

Hy
r ~x,z;b,v!5 (

n52`

`

Hy,n
r ~b,v!exp~ ianx1 ignz!. ~24!

It is worth mentioning that the so-called ‘‘Rayleigh ex
pansions’’~23! and ~24! are valid only forz>0 because the
differential equation system~19! and ~20! is only valid out-
side the grooves. They are valid, however, independen
the grating profile, even for nonanalytic profiles like, e.
semi-infinite screens of vanishing thickness, and independ
of the surface material. In order to calculate the diffract
fields, the coefficientsE y,n

r andH y,n
r in the Rayleigh expan-

sions for the fields outside the grooves have to be found.
a description of the methods used to solve this so-ca
‘‘grating problem’’ see, e.g., the book by Petit@10#.

III. RADIATION FACTORS

As stated above, the SP radiation is the sum of all pro
gative waves diffracted from the grating@i.e., all waves with
Im~gn!50#. This requires thata n

21b2<k2, which restrictsb
to 2k<b<k. In this case we havea0.0 and therefore
a n

2.a0
2 for positive n. Sincea0

21b2.k2 we would obtain
a n

21b2.k2, which is a contradiction. As a consequen
there are no solutions for propagative waves with posit
ordersn. For the outgoing wave it is most natural to intro
duce the observation angles~u,w! as depicted in Fig. 2,
which are closely related to the angles~h,z! used in I for
electron trajectories perpendicular to the rulings. In the tre
ment of conical diffraction, however, it is more convenient
introduce a different set of observation angles~Q,F! as de-
picted in Fig. 3 and defined by

an52k sinQnsinFn , ~25!

b5k cosFn , ~26!
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gn5k cosQnsinFn . ~27!

For an incident wave with parametersa0, b, and g0, the
corresponding propagative diffracted waves with parame
an , b, andgn are located on a cone. Figure 3 illustrates t
construction of the emerging waves for a diffraction ordern.
When a conical diffraction mounting is used in spectrosco
the parametersa0, b, andg0 of the incident wave are fixed
by the experiment. In contrast, in the SP case for a fi
value of k all values ubu<k are allowed, with one cone o
associated diffraction orders for each value ofb. From Eqs.
~25! and ~26!, for the wavelengthl52p/k we obtain

2nl5
D

cosC S cv2sinC cosFn1cosC sinQnsinFnD .
~28!

In the reference system of Fig. 2, the angles of observa
~u,w! for a specific diffraction ordern are given by

an5k~cosC cosun2sinC sinunsinwn!, ~29!

b5k~sinC cosun1cosC sinunsinwn!, ~30!

gn5k sinuncoswn , ~31!

and the diffraction law~28! becomes

2nl5
D

cosC S cv2cosunD . ~32!

For C50 the well-known SP diffraction law is obtained
From Eqs.~29!–~32! several peculiarities of SP spectra c
be deduced using the same arguments as in I:~i! For a certain
wavelengthl the maximum observable diffraction ordern is
given for un5180°,

unmaxu5
D

l

11c/v
cosC

, ~33!

FIG. 3. Construction of the emerging waves produced by
diffraction of an incident wave with parametersa0, b, andg0. The
waves of different orders of diffractionn are located on a cone o
apertureFn centered around they axis, with cosFn5b/k.
rs
e

,

d

n
~ii ! Observing SP radiation in first ordern521, the so-called
‘‘Wood-Rayleigh anomalies’’@28,29# are expected@30# to
be seen in the spectra at anglesuw and corresponding wave
lengths l such that the maximum observable orde
nmax522–3,... satisfy Eq.~33!. For C50 and w50 this
leads to a simple formula@11# which allows us to predict the
angles where these anomalies are located. In the more
eral casesCÞ0 and wÞ0, a somewhat more complicate
quadratic expression inx5sinuw sinww andy5cosuw is ob-
tained, which yieldsuw as a function ofww :

Ay222By1C50, ~34!

with

A5112m1~m/cosC!2, ~35!

B5m~x tanC1c/v !1~m/cosC!2c/v, ~36!

C5x212m~c/v !x tanC1~m/cosC!2~c/v !221, ~37!

andm5unmaxu2151,2,3,... . In Fig. 4 we show two example
calculated for 2-MeV electrons incident on a grating at~a!
C50° and ~b! C510°. As can be seen from Fig. 4~b!, the

e

FIG. 4. Positions (uw ,ww) of the first five Wood-Rayleigh
anomalies for SP radiation produced by 2-MeV electrons.~a!
C50°; ~b! C510°.
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Wood-Rayleigh anomalies for incidence anglesCÞ0 are not
distributed symmetrically to the observation planew50 per-
pendicular to the grating.

The power density~i.e., energy per unit area and per un
time! radiated in spectral ordern is given by the real part o
the Poynting vector:

1

2
En
r 3Hn

r*5
1

2

v

k22b2 ~«0uEy,n
r u21m0uHy,n

r u2!kn , ~38!

with kn5(an ,b,gn) being the wave vector of the propag
tive diffracted wave. When the electron traverses one pe
D of the grating the total radiated energyW5(Wn of all
spectral ordersn is equal to the work needed to move th
electron against the action of the reflected field@27#;

W5(
n

Wn5
D

p2 E
0

`

dvE
2`

`

db(
n

~ 1
2En

r 3Hn
r* !• îz ,

~39!

with the summation taken over all spectral ordersn for
which gn is real. In analogy to the case whenC50° @11,27#,
we introduce a modified radiation factorRn~u,w,C! with

uRn~u,w,C!u25
4

e2~12D2! H «0
m0

UEy,n
r U21UHy,n

r U2J
3exp~2ug0uz0!, ~40!

D5
b

k
5cosu sinC1sinu sinw cosC. ~41!

As in the case whereC50°, the exponential decay of th
radiation factor with increasingz0 is compensated for in Eq
~40! introducing an additional factor exp~2ug0uz0!.

The absence of coupling between the fields shows tha
methods used to solve the grating problem for SP radiatio
C50° can also be used to calculate SP radiation at obli
incidence, provided that the new expressions for the inco
ing fields, the dispersion relation, and the radiation fact
are used. With the definition~40! for the radiation factors,
from Eqs.~38! and ~39! for the energy radiated in spectr
ordern we finally obtain

Wn5
e2D2

2unu«0
E
0

pE
2p/2

p/2 sin2u cos2w

l3 uRn~u,w,C!u2

3exp~2z0 /hint
n !sinudu dw, ~42!

in which l is a function ofu according to Eq.~32!, and
introducing an interaction range

hint
n 5

1

2ug0u
5

l

4p
cosC@~c/v2D sinC!2

1~D221!cos2C#21/2, ~43!

which agrees with the previously found@11,27# expression
whenC50°. The power emitted in spectral ordern into a
solid angledV in direction~u,w! by one electron per secon
traversing one periodD of the grating at a distancez0 is then
given by @31#
d

he
at
e
-
s

S dPdV D
n

5
e2D2

2«0unul3 uRn~u,w,C!u2sin2u cos2w

3exp~2z0 /hint
n !. ~44!

Since the radiation factor defined in Eq.~40! does not depend
on the distancez0 of the electron trajectory to the gratin
surface the power of SP radiation emitted by an elect
beam is obtained integrating Eq.~44! over the beam profile
@11,14# and multiplying by the total number of grooves o
the grating. When a pulsed beam is used and the wavele
of the emitted photons is comparable to the bunch leng
coherence effects may have to be taken into account@17–
19#. Such coherent effects will not be considered in the f
lowing.

Rotating the grating around thez axis has two main ef-
fects. First, the apparent grating period seen by the mov
electron changes, and the emitted radiation wavelen
changes according to Eq.~32!, offering a practical way for
fine tuning the SP radiation without changing the electr
energy nor the direction of observation. Second, the po
ization of the SP radiation changes because the incom
electromagnetic field@Eqs.~11! and~12!# is a function of the
angleC. ForC50° the radiation emitted in thex-z plane is
purely H polarized. In contrast, whenCÞ0°, purely
H-polarized radiation is emitted in a cone around they-axis
defined by cosFn5(v/c)sinC ~cf. Fig. 3!. For CÞ0° the
SP emission diagram is not symmetrical with respect to
x-y plane, nor to the plane containing the electron be
trajectorywn50.

IV. CONSERVATION RELATIONS

In the ‘‘classical’’ grating problem, a grating is illumi
nated by an incident plane wave, and a first test to check
validity of the calculations is to apply the energy conserv
tion theorem, i.e., the sum of the energies of the diffrac
propagative orders has to be equal to the energy of the i
dent wave. In the special case of Smith-Purcell radiation
energy conservation law is valid for the system electron p
electromagnetic field. For the Rayleigh coefficients, modifi
conservation relations can be established. They are simila
those for Smith-Purcell radiation at perpendicular inciden
a demonstration of which can be found in@27#, to which the
interested reader is referred for further details. LetS be a
periodic perfectly conducting surface with periodD, de-
scribed byz5 f (x), andU andU8 two functions satisfying

FIG. 5. Domain to which Green’s theorem is applied in t
derivation of Eq.~49!.
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FIG. 6. Radiation factors
uR21u

2 in first order atw50° for
several tilting anglesC. Solid
lines: lamellar grating witha/D
50.1 andh/D50.5, and an elec-
tron energy of 2 MeV. Dashed
lines: sinusoidal grating witha/D
50.1, and an electron energy o
10 MeV. ~a! C50°, ~b! C510°,
~c! C520°, and~d! C530°.
ai

ann
the Helmholtz equation above the surface~i.e., for all z>0!.
Then we have

¹2U1k2U50, ~45!

¹2U81k2U850, ~46!

and, as a consequence,

U8¹2U2U¹2U850. ~47!

Applying the two-dimensional Green’s theorem to a dom
S inside the closed contourC described in Fig. 5, the follow-
ing equation is obtained:

E E
S
~U8“2U2U“2U8!dS

5 R
C
$U~n•“U8!2U8~n•“U !%ds50.

~48!

U andU8 will be identified later withEy ,Ey* or Hy ,Hy* for
the cases ofE polarization orH polarization, respectively
~A* denoting the complex conjugate ofA!. In the first caseU
andU8 satisfy the Dirichlet boundary condition~i.e., U50,
n

U850! and in the second case they satisfy the Neum
boundary condition~i.e., n•“U50, n•“U850!. Taking into
account these boundary conditions, the contribution fromL
to the contour integral in Eq.~48! vanishes. Since
exp(2 ia0x)U and exp(2 ia0x)U8 are periodic inx the con-
tributions fromL1 andL2 to the contour integral~48! cancel.
As a consequence, only the contribution fromL3 remains in
the contour integration, and we obtain

E
x1

x11D

$U]zU82U8]zU%dx50 ~49!

for any z>0 above the rulings. Applying Eq.~49! to the
couplesEy ,Ey* andHy ,Hy* in the region 0<z,z0, one ob-
tains the relations

(
real gn

uEy,n
r u2gn59K Re@Ey,0

r exp~ ig0z0!#, ~50!

(
real gn

uHy,n
r u2gn52q Re@Hy,0

r g0exp~ ig0z0!#, ~51!

in which
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FIG. 7. SP spectra in first or-
der atw50° and for several tilting
angles C in the angular range
45°<u<135°. See text for beam
parameters. Solid lines: lamella
grating with a/D50.1 and h/D
50.5, and an electron energy of
MeV. Dashed lines: sinusoida
grating with a/D50.1 and an
electron energy of 10 MeV.~a!
C50°, ~b! C510°, ~c! C520°,
and ~d! C530°.
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K5S m0

«0
D 1/2Fbc/v2k sinC

g0cosC
G . ~52!

The summations are taken over all propagative orders. R
tions ~50! and ~51! are equivalent to the energy balance c
terion @10# in spectroscopy, and can be used to test the
lidity of the results.

V. RESULTS

In Figs. 6~a!–6~d! we show radiation factorsuR21u
2 calcu-

lated for the first diffracted order as a function of the tiltin
angle C and the observation angleu, but at fixed angle
w50°. Solid lines are for an electron energy of 2 MeV, a
the grating has a rectangular profile withh/D50.1 anda/D
50.5, as used before in I. We used the modal expans
formalism@32,33#, which is suitable for this type of grating
The dashed curves are for a sinusoidal grating withh/D50.1
and an electron energy of 10 MeV, as also used before
For this type of shallow gratings the Rayleigh method@34#
has proven to be correct@35#. In both cases, numerical imple
mentation of the grating problem requires a truncation of
infinite Rayleigh expansions. The order of truncation w
increased until convergence had been achieved, and th
curacy of the computation was checked using the conse
tion relations~50! and ~51!. In order to arrive at realistic
la-

a-

n

I.

e
s
ac-
a-

power spectra, we integrated Eq.~44! over a beam profile
represented by a symmetrical two-dimensional Gaussian
tribution with sy5sz51.5 mm. The beam axis is at a dis
tance z051.5 mm above the grating, which is shielde
against electrons atz,0. The grating period isD51 mm, the
total length is 10 cm and the~peak! current is 10 Å. Neither
an angular divergence of the electron beam nor cohere
effects have been taken into consideration. The beam pa
eters are the same parameters as used in I, and have not
optimized to obtain maximum emission. Figures 7~a!–7~d!
show the spectra obtained from the radiation factors depic
in Fig. 6. The results are presented as functions of the wa
length using Eq.~32!. In the forward direction the spectra ar
characterized by strong variations near Wood-Rayle
anomalies for the lamellar grating. The curves for the sin
soidal grating are rather smooth, except in a very narr
angular range near a Wood-Rayleigh anomaly. In orde
maximize the observed intensity when using lamellar gr
ings, for a certain observation angleu the corresponding op
timum anglew has to be chosen, usually close and aboveww
as given in Fig. 4. For both types of gratings we observ
decrease of the radiated emission with increasing angleC.
This could limit the interest of using Smith-Purcell radiatio
at oblique incidence to produce tunable radiation. In Fig
we show the~u,w! dependence of the spectrum forC510°
and the same conditions as in Fig. 7 for the lamellar grati
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Contrary to SP radiation produced by electrons moving p
pendicular to the rulings, the emission pattern is not sy
metrical with respect to the anglew. The maxima in the
spectral distribution reflect the~u,w! relation of the Wood-
Rayleigh anomalies given by Eqs.~34!–~37!. In Fig. 9 we
show thew dependence of the spectrum atu552.5° ~l
50.419 mm! before and close to theunmaxu55 Wood-
Rayleigh anomaly for the same lamellar grating and elect
beam as in Fig. 8. The emission is strongly asymmetric w
respect to the electron beam trajectory and maximum em
sion occurs in this case at an azimuthal anglew'212°.

VI. CONCLUSIONS

We have calculated SP radiation produced by an elec
moving parallel to a grating at arbitrary angles with resp
to the rulings. The SP effect has been treated as a sp
case of conical diffraction by a grating, when the incide
electromagnetic field is evanescent. The radiation facto
equivalent to the diffraction coefficients—was calculated
plying techniques from the electromagnetic theory of gr

FIG. 8. SP spectrum in first order for a 2-MeV electron be
interacting with a lamellar grating at an incidence angleC510°.
Same beam and grating parameters as in Fig. 7. The electron p
over the grating from left to right.
k.
r-
-

n
h
s-

n
t
ial
t

-
-

ings. The diffraction law and a general expression for the
power emitted by a single electron moving over the grat
have been derived. Relations to check the validity of
numerical solutions of the SP grating problem have be
given. Tilting the grating with respect to the electron bea
trajectory offers a convenient way of fine tuning the wav
length of the emitted radiation. By generalizing this theo
for coherent radiation, it could be applied to the study
orotron configurations. However the optimization of expe
ments using SP radiation at oblique incidence involves ca
ful computation of the spectral-angular distribution taki
into consideration the position of the Wood-Rayleigh anom
lies.
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FIG. 9. SP spectrum in first order as a function of the azimut
angle w for a 2-MeV electron beam interacting with a lamell
grating at an incidence angleC510°. Same beam and grating pa
rameters as in Figs. 7 and 8. The observation angleu552.5° is close
to the unmaxu55 Wood-Rayleigh anomaly.
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