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Abstract
We present an optical tomographic diffractive microscope, a device able to image a complex
refractive index distribution in three dimensions. Theoretical foundations are first recalled:
diffraction under the first Born approximation explains the link between diffracted beam,
object frequencies and physical properties of the object. We then describe our experimental
setup, recording 2D interferograms in the image space, and detail the image reconstruction
process underlying our tomographic microscope, which involves 2D transforms of the
recorded interferograms, a peculiar 3D mapping of the data, and a final 3D Fourier
reconstruction. We apply tomographic reconstruction to diatom skeletons, unicellular algae
with cell walls made of silica, and compare it to holographic reconstruction. We further apply
it to pollen grains and show differences between the real and imaginary parts of the measured
complex refractive index. Finally, we also recall alternative tomographic methods.

Keywords: refractive index, absorptivity, holography, tomography, microscopy, biology,
imaging

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optical tomographic microscopy allows for three-dimensional
imaging of unstained samples by using successive
illuminations under various conditions, recording the
diffracted waves, and finally reconstructing the sample from
the diffracted waves. In this paper we use the approach
developed in [1] in which the sample is fixed and the direction
of a coherent illuminating wave is varied. This method
allows for high-resolution three-dimensional imaging and
has a potential for high-speed, three-dimensional imaging,
as the imaging can be performed neither moving the
sample nor moving any heavy component: the direction
of the illuminating beam can be varied using a lightweight
galvanometer mirror or even an acousto-optic deflector. In
our setup, we use a detector placed in an image plane, which
simplifies the imaging device and improves speed.

In the present paper, we first describe the general
principles underlying the obtainable resolution. We describe

our optical setup and the method for obtaining three-
dimensional images. We also discuss existing alternatives
for optical tomographic microscopy.

2. Theoretical background

We first give a short description, based on the approach given
by Wolf [2], within the first Born approximation for weakly
scattering objects. We recall the scalar propagation equation
in an inhomogeneous medium, neglecting polarization effects:

(∇2 + k(r)2)ψ(r) = 0 with k(r) = 2π

λ
n(r) (1)

wherein n(r) =
√

µ(r)ε(r)
µ0ε0

is the complex refractive index and

λ is the wavelength in vacuum of an incident plane wave.
Such an equation cannot be solved directly. Writing a

solution in terms of Green’s function

G(r) = exp(jki |r|)
4π |r| (2)
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wherein ki = 2π n0
λ

is the modulus of the wave vector of the
incident plane wave in the immersion medium having index
n0, leads to [3]:

ψs(r) =
∫

G(r − r′)O(r′)ψ(r′) dr′ (3)

where ψ(r) = ψs(r) + ψi(r) is the total field, ψi(r) being the
illumination field and ψs(r) the scattered field, and

O(r) = k2
i

(
n2(r) − n2

0

n2
0

)
(4)

is the object function, n being the index of the specimen. The
Born approximation assumes that objects are weakly scattering
only. Then the diffracted field is small compared to the incident
field and equation (3) is rewritten as

ψs(r) =
∫

G(r − r′)O(r′)ψi(r′) dr′. (5)

This equation can be interpreted as follows: Green’s
function represents an outgoing scalar field scattered by a
point object. The field scattered by a point is thus the product
of the Green function by the value at that specific point of
the object function and the value at that specific point of the
incident scalar field. The field scattered by the entire object
is obtained by integration on all points of the object, i.e. it is
obtained by convolution of Green’s function by the product of
the object function and the incident scalar field. Adding an
ingoing scalar field to Green’s function will not modify the
detected field since in the far field only the outgoing field is
detected due to the orientation of detectors. It will modify
the calculated field scattered by the entire object, but not the
part of that field which we detect. This method, which is
a scalar equivalent of the vector method used in [1], allows
us to write modified equations between the object function
and the field as detected, which involve only homogeneous
propagating waves. By adding a suitable ingoing field to the
Green function (equation (2)), we obtain

Gm(r) = exp(jki |r|)
4π |r| − exp(−jki |r|)

4π |r| , (6)

and the Fourier transform of Gm(r) is:

G̃m(kd) = j

4πki

δ(|kd| − ki), (7)

i.e. it represents a purely monochromatic propagative scalar
field, unlike the Green function itself.

Thus in equation (5):

• we replace Green’s function G(r) by the modified Green
function Gm(r).

• we consider an incident plane wave ψi(r) =
ai exp(jφi) exp(jki · r).

• we obtain a modified scattered field ψm(r) which replaces
the scattered field ψs(r) and cannot be distinguished from
the scattered field by detectors placed in the far field
and looking towards the object. This modified field
can be viewed as the detected field. It is also the
field which would be reconstructed by a backscattering
algorithm since such algorithms assume a monochromatic
homogeneous scalar field.

In the Fourier space equation (5) then becomes

ψ̃m(kd) = j

4πki

ai exp(jφi)δ(|kd| − |ki|)Õ(kd − ki). (8)

From (8), we then obtain the complex amplitude of the
scalar field in the Fourier space:

A(kd) = j

4πki

ai exp(jφi)Õ(kd − ki) (9)

wherein this complex amplitude A(kd) depends only on the
direction of kd and is defined by

ψ̃m(kd) = A(kd)δ(|kd| − |ki|). (10)

Equation (9) links the complex amplitude of the measured
scattered field to the object function via their Fourier
transforms. In the 3D tomographic microscope a detector
placed in a Fourier plane detects the complex amplitude A(kd).
This complex amplitude is then corrected for variations of φi

and ai , and mapped onto the object function Õ(ko).
This scalar approximation has been shown to give good

results and we will use it in the following. A more elaborate
version can be obtained by replacing Green functions by the
electric field vector radiated by a dipole [1].

Also, note that under the first Born approximation, the
reconstruction is strictly valid for a low phase change only,
which is proportional to both the object index and size, while
under the Rytov approximation, ‘the size of the object is not
a factor’ (from [3]) and therefore the Rytov approximation is
expected to give better results for larger objects.

We will use the spatial frequencies fd = kd/2π

(spatial frequency of the diffracted wave), fi = ki/2π (spatial
frequency of the illumination wave) and f0 = k0/2π (spatial
frequency of the object). Using equation (9) we find that
spatial frequencies are linked by

fd = fi + fo. (11)

When considering a transmission geometry and only one
direction of illumination, only one half of the Ewald sphere
could be recorded at best. Moreover this half-sphere is
restricted to a cap of sphere only, because of the limited
numerical aperture of the microscope objective (NAobj) used
in the detection system.

The wave diffracted by the weakly scattering object is
recorded in both amplitude and phase using a holographic
recording setup. As shown in figure 1(a), a very limited
subset of the diffracted frequencies can be measured. For
a given incident direction fi, and an observation direction fd,
the corresponding spatial frequency of the object permittivity
is fd − fi. The set of spatial frequencies fd − fi which are
recorded is shown as a bold arc of circle in figure 1(b) (−fi is
indicated by the dashed arrow in figure 1(b)). The resulting
limited subset of recorded object frequencies will lead to low
imaging quality, as will be shown in section 5.

The recorded spatial frequency space can be filled using
successive variable directions of illumination, leading to
recording a more complete subset of the three-dimensional
frequency representation of the object, in order to perform a
more accurate reconstruction of the object.

In our approach, the detection system and the specimen are
fixed, and tomographic acquisition is performed by changing
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Figure 1. Principle of diffractive tomographic microscopy: construction of the detected frequency support in the case of a transmission
microscope.

the angle of incidence of the illumination wave. The incident
direction is changed but the observation directions are the
same. After proper shifting with respect to the incident
illumination, other sets of the object frequencies are detected
as shown in figure 1(c). Using a tilted illuminating wave
permits us to record higher frequencies from the Fourier
transform of the specimen. It is therefore desirable to use
high illumination angles. In our setup, this is performed using
a high NA condenser, as in a classical incoherent transmission
microscope.

The process depicted in figures 1(a)–(c)) in the (fy, fz)

plane is also shown in figures 1(d)–(f ) in the (fx, fy) plane.
The different parts of figure 1 give a complete explanation of
how the spatial frequencies space is filled in a transmission
setup. For example, the upper dashed disc in figure 1(f )
corresponds to an illumination at 90◦ azimuth angle. It shows
up as the upper dashed arc of circle in figure 1(c).

When a large number of incidences are used, the support
of the detected frequencies in the (x–y) plane becomes a disc
as shown in figure 1(f ).

In the (y–z) plane, the Fourier domain scanned by the
diffractive tomographic microscope when a large number of
incident angles are used takes the form of the well-known
butterfly-shaped support of the optical transfer function (OTF)
for a transmission microscope.

3. Experimental setup

Figure 2(a) depicts a sketch of the experimental setup of the
tomographic diffractive microscope as originally described in
[1]. It is based on a Mach–Zehnder setup used to realize
phase-shifting holography [5].

The light issued from a He–Ne laser is separated into a
reference wave and an illumination wave by the beam splitter
BS1. The reference wave is made plane using lenses L3 and
L4. In order to perform phase-shifting holography, its phase
is controlled by a mirror mounted on a piezoelectric element.
Lenses L1 and L2 are used to illuminate the specimen with
a plane illumination wave. The direction of this illumination
wave is controlled via the motorized tilting mirror and the
condenser: a slight tilt of the mirror generates a large angular
variation of the plane wave illuminating the specimen. After
diffraction by the specimen, the diffracted wave is collected
by the objective. It then passes through lenses LT and L5 and
reaches the CCD sensor which is placed at the focal point of
the non-diffracted part of the illuminating wave, that is in a
Fourier plane.

The reference wave is recombined with the diffracted
wave using BS2. The interferences obtained are recorded
on the CCD sensor. For each direction of the illumination
wave, four images are recorded on the CCD with the phase
of the reference wave being shifted by π/2 between each
image. A complex image is computed using the formula
A = I0 − Iπ + j(Iπ/2 − I3π/2) where A is the complex value,
defined for each pixel of the CCD.

However, placing the CCD sensor in a Fourier plane has a
major drawback: in such a plane, the non-diffracted part of the
illuminating wave generates a very bright spot on the camera.
If this bright spot is accurately detected, the diffracted wave
itself is usually below the detection threshold of the sensor.

We solved this problem by placing the CCD sensor in an
image plane as presented in figure 2(b). In this case, the non-
diffracted part of the illuminating wave generates a continuous
background, which does not tend to saturate the sensor. After
the phase-shifting step, a numerical two-dimensional Fourier
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Figure 2. Experimental setup of the transmission diffractive tomographic microscope. In (a) the CCD plane is localized in a Fourier plane,
whereas in (b) it is localized in an image plane.
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Figure 3. Normalization for mapping of the Fourier frequencies.

transform is performed on the complex image, yielding the
same spectrum which would have been directly obtained if the
camera had been placed in a Fourier plane.

Note that changing the direction of illumination may
be limited by total internal reflection. For living biological
specimens, whose index of refraction may be approximated
to that of water (1.33), using an oil immersion condenser
with numerical aperture NA = 1.4 will lead to total internal
reflection for illumination at the glass-toward-water interface.
Similarly, the collection of the diffracted wave by the
microscope objective would also be limited to NA = 1.33
(at best). In order to avoid this phenomenon, and as the
samples we studied here are non-living diatom skeletons and
environment resistant pollens, we actually embedded these
specimens into the same immersion oil as the objective or the
condenser. Doing so, we could check that the illumination
wave (without specimen) is indeed collected by the objective

even at a maximum illumination angle, which ensures that both
the illumination and the detection are performed at maximal
numerical aperture. For 3D imaging of living cells, using
water immersion objectives (with NA = 1.2) would probably
be more appropriate.

4. Normalization before mapping of the data

Equation (11) shows that one must properly determine fi in
order to remap the Fourier space as described by figure 1.
Because the object is weakly scattering, the location of this
single frequency corresponds to the location of the maximum
of intensity of the diffracted wave. We determine fi by
extracting the coordinates fdmax = fi of the maximum of
intensity of the diffracted wave (figure 3(a)). The complex
amplitude Ad(fdmax) at that point is equal to the complex
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Figure 4. Holography versus tomography. On the left side, three slices extracted from the holographic reconstruction are shown: (a) shows
a (x–z) plane and (c), (e) a (x–y) plane. On the right side, the same object is shown in the tomographic case (1000 angles): (b) shows a (x–z)
plane and (d), (f ) show a (x–y) plane corresponding to (c), (e). The scale bar represents 5 µm.

amplitude of the illumination wave ai exp(jφi). Because
of mechanical limitations, the illumination wave may be
affected by random phase shifts φi (because mechanical
rotation is inevitably accompanied with parasitic translations)
as well as possible vibrations. Furthermore, laser intensity
fluctuations may happen and also the transmission of the
illumination and detection optics may vary with the angle
of incidence, changing ai . One must compensate for these
possible fluctuations. This is simply performed by dividing
the amplitude of the diffracted wave by the complex amplitude
of the illumination wave (figure 3(b)):

Anorm(fd) = Ad(fd)/Ad(fdmax). (12)

In application of equation (11) the normalized complex
amplitude is then translated as shown in figure 3(c), which
yields the complex amplitude of the object Fourier transform
Aobj:

Aobj(fo) = Anorm(fd − fdmax). (13)

These normalization must be repeated for the successive
diffracted wavefronts obtained by varying the illumination
direction. Note that this step constitutes a vital point in practice

for a correct specimen reconstruction. Omitting this correction
would lead to randomization of the acquired data that may
result in a totally unexploitable image.

The successive complex amplitudes are accumulated in
the Fourier space, yielding the frequency representation of
the object. Some redundant frequencies may appear; in
this case, we take the average of the complex amplitudes
located at these redundant frequencies, which allows for an
important reduction of the noise. Finally, performing a three-
dimensional inverse Fourier transform yields the object three-
dimensional representation.

5. Results

A comparison between holographic (1 illumination angle)
and tomographic reconstructions (1000 angles) is shown in
figure 4 for a (y–z) and two (x–y) planes. We imaged a
Coscinusdiscus sp diatom whose skeleton (or frustule) is made
of silica. These data have been acquired with NAobj = 1.4 and
in the tomography case, with a condenser numerical aperture
corresponding to NAcond = 1.4.
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Figure 5. Refractive index (left side) and absorption (right side) parts of a snowdrop pollen for different z planes.

The vertical slicing capabilities of optical tomography are
well illustrated by figure 4. In the left column of figure 4,
the hologram is disturbed by out-of-focus parts of the object
and thus does not allow for reasonable image quality. In the
right column of figure 4, the thin slicing capabilities of optical
tomography allow the obtention of a vertical slice (figure 4(b))
and of a middle (figure 4(d)) and top (figure 4(f )). As can be
seen in figure 4(f ), the top slice shows only the very top of
the diatom and is undisturbed by out-of-focus information.

Diffractive tomographic microscope under the first Born
approximation has the capability to image simultaneously
the refractive index and the absorption of a semi-transparent
object. In figure 5, both the refractive index and absorptivity
(imaginary part of the complex refractive index) of a snowdrop
pollen are presented in the (x–y) plane at different z values.
These two sets of information show different structures inside
the pollen (figures 5(a) and (b)). The absorptive part of an
organelle (white arrows) is well contrasted in figure 5(d)

whereas it is almost invisible in figure 5(c). On the other
hand, the refractive index in figure 5(e) is in better contrast
than absorptivity in figure 5(f ).

Our computation yields the object function of
equation (4) (or scattering potential). For small n(r) − n0

this object function is simplified as:

O(r) = 2
k2
i

n0
(n(r) − n0) (14)

so that the object function is proportional to the complex
refractive index, i.e. its real part is proportional to the real part
of the refractive index and its imaginary part is proportional to
the absorptivity.

Nevertheless, it should be noted that the actual
experimental setup has some drawbacks: horizontal walls are
difficult to image, due to the missing cone along the optical
longitudinal axis in the Fourier space.

6. Discussion

Tomographic microscopy has become the subject of intensive
research and a number of alternative techniques have been
developed. Different methods have been proposed and used for
solving the problem of properly filling a reasonable part of the
frequency space, mapping the data onto the frequency space,
detecting the diffracted wave and improving the resolution.
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A common feature to transmission microscopes is the
presence of the so-called missing cone in the frequency space,
which strongly limits the resolution along the optical axis. A
popular alternative to obtain a more isotropic resolution is to
rotate the sample instead of varying the illumination direction
[7–9]. In such a setup, the sample must be prepared within a
rotating cylinder, which may be more difficult. This setup can
also be modified for using non-coherent illumination [11].

Another alternative is to use simultaneous illumination by
more than one parallel beam [6, 12]. However, only a limited
number of different illumination directions can be used in
this method, the advantage being that they could in principle
be used simultaneously, which would improve the acquisition
speed.

Varying the wavelength [12] can also improve the imaging
capabilities because it allows for the acquisition of different
information, as the curvature radius of the recorded cap of
spheres changes with the wavelength (a missing cone does
remain). For 2D imaging only, the lateral resolution is anyway
determined by the shortest wavelength, but for 3D imaging,
a more complete subset would be recorded, which would
improve the imaging capabilities along the optical axis.

The possibility of simultaneously using reflection and
transmission to improve the frequency support was proposed
in [1, 19] but has not yet been reduced to practice.

The method used in the present paper for filling the
frequency space is to sequentially vary the directions of the
illumination beam. It has the advantage of yielding an easy-
to-use instrument without any unusual sample preparation,
and yet allowing a high number of illuminations to be used
and a reasonably large part of the frequency space to be
filled. However, each of the above alternatives has specific
advantages in certain situations; especially, each method
allows for a different filling of the frequency space.

We used phase stepping holography to measure the
diffracted field. A possible alternative is to use in-line
holography [14] rather than using a separate illumination
and reference beam. Doing so, only one hologram is to be
recorded and processed in order to measure the diffracted
components. This would also help to increase the acquisition
speed. However the phase retrieval algorithms which must
be used in this case cannot easily recover both the phase and
amplitude of the detected diffracted beam. In-line holography
can be modified for non-coherent light [15]. In this case, the
sample must be assumed to be a purely dephasing one, i.e. non-
absorptive. This hypothesis can often be fulfilled in practice,
but must be handled with care: it is for example clearly at
fault for pollens, as shown by figure 5. Alternatively, off-axis
holography also permits us to record the diffracted field with
only one hologram [8]. In that case, a camera with a larger
CCD chip should be used in order to record the same field of
view with the same resolution [5].

In this work the mapping of the frequency space is realized
using the first Born approximation, and takes into account
the diffraction in order to reach a subwavelength resolution.
Such an approximation has already been employed in [7] and
[1]. In [8, 9, 11, 18], mapping is performed using a path-
integrated phase assumption and thus the reconstruction is

realized using back-projection algorithm (Radon transform)
and consequently may not be strictly considered as diffraction
tomography. In [9, 10], a comparison between the Radon
transform and exact mapping is detailed. In particular,
the authors have highlighted possible reconstruction artefacts
when using Radon reconstruction. When trying to get the
maximum resolution, diffraction has to be taken into account
in the reconstruction process.

In order to even further improve the resolution of the
images, a priori information about the observed object can
be used for the reconstruction [16, 17]. Also, non-linear
reconstruction methods can improve the quality of the images.
These techniques could become a useful complement to the
usual, linear version of optical tomography detailed in this
paper, but their use still has to be investigated for such a set-
up. Note also that the Fourier method we used requires that
the Born approximation be satisfied, namely that the sample
is both weakly absorbing and induces small phase changes
only. The Rytov approximation, which is also linear, would be
expected to provide better results for larger objects. Therefore,
the method for the microtomographic images reconstruction
probably has to be adapted with respect to the considered
specimen and experimental goals, trying to detect the tiniest
features in a smaller specimen, or trying to image a much
larger specimen with a more modest resolution.

An important point in practice for biological application
is also the speed of acquisition and reconstruction of the
3D images. Our set-up is presently slow. For 1000 angles
of illumination, 4000 holograms have to be recorded. The
piezoelectric element has to physically translate a mirror, and
the stepper motors driven-, tip-tilt mirror used for controlling
the illumination must both ensure vibrationless motions.
We therefore are restricted to slow movements, and have
introduced temporizations to wait for vibration damping. As
a consequence, 4000 holograms take 40 min to be recorded.
This obviously is incompatible with live-cell imaging, but is
tolerable for our specimens, or even for fixed cells.

Replacing these elements by high-speed systems may
permit us to overcome these limitations as demonstrated
by Choi et al [18], who recently presented a high-speed
version of our set-up. The reconstruction method they used,
however, based on an inverse Radon transform, resulted in
lower accuracy of the reconstruction, as shown for example
by Gorski and Olsten [9]. We now plan to improve the
speed of acquisition of our set-up, by replacing the speed
limiting mechanical elements by faster systems, as for example
galvanometric mirrors instead of a stepper motor driven mirror
for illumination control, an electro-optic modulator instead of
a piezo mirror for phase stepping, and a high-speed camera.

The reconstruction is fast: for a 32 bits 512 voxel complex
final image, the 1000 2D transforms, the 3D mapping of the
data and the final 3D Fourier transform take less than 5 min on
a 2.6 GHz dual-core PC using 64 bits Linux, and fast 3D FFT
transforms [20]. Note that most of the computational time
is spent on reading the data on the hard-disk and not in the
Fourier transforms themselves. Presently, we perform all the
computations after completing the acquisitions. Alternatively,
one could also perform all the 2D computations and 3D
mapping progressively with the acquisitions, so that only the
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final 3D Fourier transform would remain, which would also
permit us to save time.

Note that our method is comparable to the above-
described alternate methods in terms of reconstruction speed,
as the involved mathematical operations are the same for all
methods. However, rotating the specimen for tomography
presents the drawback that inevitable parasitic mechanical
translations of the sample oblige a precise numerical
compensation before mapping the information in the 3D
Fourier space [10]. While these parasitic movements also
happen when tilting the mirror in our set-up, their correction is
very easy, as explained in section 4 (figure 3). This probably
explains why results already presented by various authors
using specimen rotation do not present optimal resolution,
because then an inverse Radon transformation seems easier.
Also, biologists often tend to prefer preparing their sample
using the more classical glass slide with the cover-glass method
instead of having to insert it within a microcapillary.

7. Conclusions

Tomographic microscopy allows for quantitative three-
dimensional imaging with optimized resolution. Whereas
fluorescence microscopy has experienced a strong evolution
with the generalized use of confocal fluorescence microscopy,
there has been no corresponding evolution in transmission
or reflection microscopy. Use of confocal microscopes in
transmission has always proven difficult and did not lend itself
to generalized use. We hope that tomographic microscopy
will bring to transmission microscopy the improvement,
which it needs to keep pace with confocal fluorescence
imaging. The tomographic microscopy method presented in
this paper should allow high-resolution and high-speed three-
dimensional observation of unstained samples. Furthermore, it
may allow confocal images to be superimposed to quantitative
three-dimensional images, instead of the more usual DIC
contrast images.
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